901 research outputs found
Uniform high irradiance source
New 50 Kw xenon short arc lamp mounted within elliptical collector provides irradiance levels up to 4.4 x 10 to the 7th power watts/sq m with non-uniformity ratio of 3.30. Energy mixer or light pipe between lamp source and target improves non-uniformity to required ratio
Crystallization and gelation in colloidal systems with short-ranged attractive interactions
We systematically study the relationship between equilibrium and
non-equilibrium phase diagrams of a system of short-ranged attractive colloids.
Using Monte Carlo and Brownian dynamics simulations we find a window of
enhanced crystallization that is limited at high interaction strength by a
slowing down of the dynamics and at low interaction strength by the high
nucleation barrier. We find that the crystallization is enhanced by the
metastable gas-liquid binodal by means of a two-stage crystallization process.
First, the formation of a dense liquid is observed and second the crystal
nucleates within the dense fluid. In addition, we find at low colloid packing
fractions a fluid of clusters, and at higher colloid packing fractions a
percolating network due to an arrested gas-liquid phase separation that we
identify with gelation. We find that this arrest is due to crystallization at
low interaction energy and it is caused by a slowing down of the dynamics at
high interaction strength. Likewise, we observe that the clusters which are
formed at low colloid packing fractions are crystalline at low interaction
energy, but glassy at high interaction energy. The clusters coalesce upon
encounter.Comment: 8 pages, 8 figure
Turbulence, heat-transfer, and boundary layer measurements in a conical nozzle with a controlled inlet velocity profile
Turbulence, heat transfer, and boundary layer measurements in conical nozzl
Phase behavior of hard spheres confined between parallel hard plates: Manipulation of colloidal crystal structures by confinement
We study the phase behavior of hard spheres confined between two parallel
hard plates using extensive computer simulations. We determine the full
equilibrium phase diagram for arbitrary densities and plate separations from
one to five hard-sphere diameters using free energy calculations. We find a
first-order fluid-solid transition, which corresponds to either capillary
freezing or melting depending on the plate separation. The coexisting solid
phase consists of crystalline layers with either triangular or square symmetry.
Increasing the plate separation, we find a sequence of crystal structures from
n triangular to (n+1) square to (n+1) triangular, where n is the number of
crystal layers, in agreement with experiments on colloids. At high densities,
the transition between square to triangular phases are intervened by
intermediate structures, e.g., prism, buckled, and rhombic phases.Comment: 9 pages, 4 figures. Accepted for publication in J. Phys.: Condens.
Matte
O-119. High sperm hyperhaploidy rates for chromosomes 1, 17, X and Y in men with severe male factor infertility
Lagrangian planetary equations in Schwarzschild space--time
We have developed a method to study the effects of a perturbation to the
motion of a test point--like object in a Schwarzschild spacetime. Such a method
is the extension of the Lagrangian planetary equations of classical celestial
mechanics into the framework of the full theory of general relativity. The
method provides a natural approach to account for relativistic effects in the
unperturbed problem in an exact way.Comment: 7 pages; revtex; accepted for publication in Class. Quantum Gra
Hard sphere crystallization gets rarer with increasing dimension
We recently found that crystallization of monodisperse hard spheres from the
bulk fluid faces a much higher free energy barrier in four than in three
dimensions at equivalent supersaturation, due to the increased geometrical
frustration between the simplex-based fluid order and the crystal [J.A. van
Meel, D. Frenkel, and P. Charbonneau, Phys. Rev. E 79, 030201(R) (2009)]. Here,
we analyze the microscopic contributions to the fluid-crystal interfacial free
energy to understand how the barrier to crystallization changes with dimension.
We find the barrier to grow with dimension and we identify the role of
polydispersity in preventing crystal formation. The increased fluid stability
allows us to study the jamming behavior in four, five, and six dimensions and
compare our observations with two recent theories [C. Song, P. Wang, and H. A.
Makse, Nature 453, 629 (2008); G. Parisi and F. Zamponi, Rev. Mod. Phys, in
press (2009)].Comment: 15 pages, 5 figure
Structural Transitions in A Crystalline Bilayer : The Case of Lennard Jones and Gaussian Core Models
We study structural transitions in a system of interacting particles arranged
as a crystalline bilayer, as a function of the density and the distance
between the layers. As is decreased a sequence of transitions involving
triangular, rhombic, square and centered rectangular lattices is observed. The
sequence of phases and the order of transitions depends on the nature of
interactions.Comment: 11 pages,6 figure
Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls
Using Gibbs ensemble Monte Carlo simulations and density functional theory we
investigate the fluid-fluid demixing transition in inhomogeneous
colloid-polymer mixtures confined between two parallel plates with separation
distances between one and ten colloid diameters covering the complete range
from quasi two-dimensional to bulk-like behavior. We use the
Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-polymer
interactions are hard-sphere like, whilst the pair potential between polymers
vanishes. Two different types of confinement induced by a pair of parallel
walls are considered, namely either through two hard walls or through two
semi-permeable walls that repel colloids but allow polymers to freely
penetrate. For hard (semi-permeable) walls we find that the capillary binodal
is shifted towards higher (lower) polymer fugacities and lower (higher) colloid
fugacities as compared to the bulk binodal; this implies capillary condensation
(evaporation) of the colloidal liquid phase in the slit. A macroscopic
treatment is provided by a novel symmetric Kelvin equation for general binary
mixtures, based on the proximity in chemical potentials of statepoints at
capillary coexistence and the reference bulk coexistence. Results for capillary
binodals compare well with those obtained from the classic version of the
Kelvin equation due to Evans and Marini Bettolo Marconi [J. Chem. Phys. 86,
7138 (1987)], and are quantitatively accurate away from the fluid-fluid
critical point, even at small wall separations. For hard walls the density
profiles of polymers and colloids inside the slit display oscillations due to
packing effects for all statepoints. For semi-permeable walls either similar
structuring or flat profiles are found, depending on the statepoint considered.Comment: 15 pages, 13 figure
Surface-charge-induced freezing of colloidal suspensions
Using grand-canonical Monte Carlo simulations we investigate the impact of
charged walls on the crystallization properties of charged colloidal
suspensions confined between these walls. The investigations are based on an
effective model focussing on the colloids alone. Our results demonstrate that
the fluid-wall interaction stemming from charged walls has a crucial impact on
the fluid's high-density behavior as compared to the case of uncharged walls.
In particular, based on an analysis of in-plane bond order parameters we find
surface-charge-induced freezing and melting transitions
- …
