901 research outputs found

    Uniform high irradiance source

    Get PDF
    New 50 Kw xenon short arc lamp mounted within elliptical collector provides irradiance levels up to 4.4 x 10 to the 7th power watts/sq m with non-uniformity ratio of 3.30. Energy mixer or light pipe between lamp source and target improves non-uniformity to required ratio

    Crystallization and gelation in colloidal systems with short-ranged attractive interactions

    Full text link
    We systematically study the relationship between equilibrium and non-equilibrium phase diagrams of a system of short-ranged attractive colloids. Using Monte Carlo and Brownian dynamics simulations we find a window of enhanced crystallization that is limited at high interaction strength by a slowing down of the dynamics and at low interaction strength by the high nucleation barrier. We find that the crystallization is enhanced by the metastable gas-liquid binodal by means of a two-stage crystallization process. First, the formation of a dense liquid is observed and second the crystal nucleates within the dense fluid. In addition, we find at low colloid packing fractions a fluid of clusters, and at higher colloid packing fractions a percolating network due to an arrested gas-liquid phase separation that we identify with gelation. We find that this arrest is due to crystallization at low interaction energy and it is caused by a slowing down of the dynamics at high interaction strength. Likewise, we observe that the clusters which are formed at low colloid packing fractions are crystalline at low interaction energy, but glassy at high interaction energy. The clusters coalesce upon encounter.Comment: 8 pages, 8 figure

    Turbulence, heat-transfer, and boundary layer measurements in a conical nozzle with a controlled inlet velocity profile

    Get PDF
    Turbulence, heat transfer, and boundary layer measurements in conical nozzl

    Phase behavior of hard spheres confined between parallel hard plates: Manipulation of colloidal crystal structures by confinement

    Full text link
    We study the phase behavior of hard spheres confined between two parallel hard plates using extensive computer simulations. We determine the full equilibrium phase diagram for arbitrary densities and plate separations from one to five hard-sphere diameters using free energy calculations. We find a first-order fluid-solid transition, which corresponds to either capillary freezing or melting depending on the plate separation. The coexisting solid phase consists of crystalline layers with either triangular or square symmetry. Increasing the plate separation, we find a sequence of crystal structures from n triangular to (n+1) square to (n+1) triangular, where n is the number of crystal layers, in agreement with experiments on colloids. At high densities, the transition between square to triangular phases are intervened by intermediate structures, e.g., prism, buckled, and rhombic phases.Comment: 9 pages, 4 figures. Accepted for publication in J. Phys.: Condens. Matte

    Lagrangian planetary equations in Schwarzschild space--time

    Get PDF
    We have developed a method to study the effects of a perturbation to the motion of a test point--like object in a Schwarzschild spacetime. Such a method is the extension of the Lagrangian planetary equations of classical celestial mechanics into the framework of the full theory of general relativity. The method provides a natural approach to account for relativistic effects in the unperturbed problem in an exact way.Comment: 7 pages; revtex; accepted for publication in Class. Quantum Gra

    Hard sphere crystallization gets rarer with increasing dimension

    Full text link
    We recently found that crystallization of monodisperse hard spheres from the bulk fluid faces a much higher free energy barrier in four than in three dimensions at equivalent supersaturation, due to the increased geometrical frustration between the simplex-based fluid order and the crystal [J.A. van Meel, D. Frenkel, and P. Charbonneau, Phys. Rev. E 79, 030201(R) (2009)]. Here, we analyze the microscopic contributions to the fluid-crystal interfacial free energy to understand how the barrier to crystallization changes with dimension. We find the barrier to grow with dimension and we identify the role of polydispersity in preventing crystal formation. The increased fluid stability allows us to study the jamming behavior in four, five, and six dimensions and compare our observations with two recent theories [C. Song, P. Wang, and H. A. Makse, Nature 453, 629 (2008); G. Parisi and F. Zamponi, Rev. Mod. Phys, in press (2009)].Comment: 15 pages, 5 figure

    Structural Transitions in A Crystalline Bilayer : The Case of Lennard Jones and Gaussian Core Models

    Get PDF
    We study structural transitions in a system of interacting particles arranged as a crystalline bilayer, as a function of the density ρ\rho and the distance dd between the layers. As dd is decreased a sequence of transitions involving triangular, rhombic, square and centered rectangular lattices is observed. The sequence of phases and the order of transitions depends on the nature of interactions.Comment: 11 pages,6 figure

    Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls

    Full text link
    Using Gibbs ensemble Monte Carlo simulations and density functional theory we investigate the fluid-fluid demixing transition in inhomogeneous colloid-polymer mixtures confined between two parallel plates with separation distances between one and ten colloid diameters covering the complete range from quasi two-dimensional to bulk-like behavior. We use the Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-polymer interactions are hard-sphere like, whilst the pair potential between polymers vanishes. Two different types of confinement induced by a pair of parallel walls are considered, namely either through two hard walls or through two semi-permeable walls that repel colloids but allow polymers to freely penetrate. For hard (semi-permeable) walls we find that the capillary binodal is shifted towards higher (lower) polymer fugacities and lower (higher) colloid fugacities as compared to the bulk binodal; this implies capillary condensation (evaporation) of the colloidal liquid phase in the slit. A macroscopic treatment is provided by a novel symmetric Kelvin equation for general binary mixtures, based on the proximity in chemical potentials of statepoints at capillary coexistence and the reference bulk coexistence. Results for capillary binodals compare well with those obtained from the classic version of the Kelvin equation due to Evans and Marini Bettolo Marconi [J. Chem. Phys. 86, 7138 (1987)], and are quantitatively accurate away from the fluid-fluid critical point, even at small wall separations. For hard walls the density profiles of polymers and colloids inside the slit display oscillations due to packing effects for all statepoints. For semi-permeable walls either similar structuring or flat profiles are found, depending on the statepoint considered.Comment: 15 pages, 13 figure

    Surface-charge-induced freezing of colloidal suspensions

    Full text link
    Using grand-canonical Monte Carlo simulations we investigate the impact of charged walls on the crystallization properties of charged colloidal suspensions confined between these walls. The investigations are based on an effective model focussing on the colloids alone. Our results demonstrate that the fluid-wall interaction stemming from charged walls has a crucial impact on the fluid's high-density behavior as compared to the case of uncharged walls. In particular, based on an analysis of in-plane bond order parameters we find surface-charge-induced freezing and melting transitions
    corecore