583 research outputs found
Rounding of aggregates of biological cells: Experiments and simulations
The influence of surface tension and size on rounding of cell aggregates are
studied using chick embryonic cells and numerical simulations based on the
cellular Potts model. Our results show exponential relaxation in both cases as
verified in previous studies using 2D Hydra cell aggregates. The relaxation
time decreases with higher surface tension as expected from hydrodynamics laws.
However, it increases faster than linearly with aggregate size. The results
provide an additional support to the validity of the cellular Potts model for
non-equilibrium situations and indicate that aggregate shape relaxation is not
governed by the hydrodynamics of viscous liquids
What's Ahread in High-Speed Wireless Data Communications? The Future Will Be Better Tomorrow - And Different Than What We've Been Expecting
The present situation in high-speed wireless data communications is examined. While there is growing demand for wireless bandwidth, the most pressing problem affecting this situation today is the attempt to increase bandwidth by using the same technology with tricks - rather than by using innovation. Opportunities for innovation are quite good with higher carrier frequencies, since these enable simplicity and low power consumption and opening the door to truly portable wireless peer-to-peer (WP2P) networking. Numerous challenges exist in technology and design methods; however, meeting these intellectual challenges is the only route to new and exciting wireless data technologies
Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina
Hayashi and Carthew (Nature 431 [2004], 647) have shown that the packing of
cone cells in the Drosophila retina resembles soap bubble packing, and that
changing E- and N-cadherin expression can change this packing, as well as cell
shape.
The analogy with bubbles suggests that cell packing is driven by surface
minimization. We find that this assumption is insufficient to model the
experimentally observed shapes and packing of the cells based on their cadherin
expression. We then consider a model in which adhesion leads to a surface
increase, balanced by cell cortex contraction. Using the experimentally
observed distributions of E- and N-cadherin, we simulate the packing and cell
shapes in the wildtype eye. Furthermore, by changing only the corresponding
parameters, this model can describe the mutants with different numbers of
cells, or changes in cadherin expression.Comment: revised manuscript; 8 pages, 6 figures; supplementary information not
include
Behavior of cell aggregates under force-controlled compression
In this paper we study the mechanical behavior of multicellular aggregates under compressive loads and subsequent releases. Some analytical properties of the solution are discussed and numerical results are presented for a compressive test under constant force imposed on a cylindrical specimen. The case of a cycle of compressions at constant force and releases is also considered. We show that a steady state configuration able to bear the load is achieved. The analytical determination of the steady state value allows to obtain mechanical parameters of the cellular structure that are not estimable from creep tests at constant stres
Kinetic Monte Carlo and Cellular Particle Dynamics Simulations of Multicellular Systems
Computer modeling of multicellular systems has been a valuable tool for
interpreting and guiding in vitro experiments relevant to embryonic
morphogenesis, tumor growth, angiogenesis and, lately, structure formation
following the printing of cell aggregates as bioink particles. Computer
simulations based on Metropolis Monte Carlo (MMC) algorithms were successful in
explaining and predicting the resulting stationary structures (corresponding to
the lowest adhesion energy state). Here we present two alternatives to the MMC
approach for modeling cellular motion and self-assembly: (1) a kinetic Monte
Carlo (KMC), and (2) a cellular particle dynamics (CPD) method. Unlike MMC,
both KMC and CPD methods are capable of simulating the dynamics of the cellular
system in real time. In the KMC approach a transition rate is associated with
possible rearrangements of the cellular system, and the corresponding time
evolution is expressed in terms of these rates. In the CPD approach cells are
modeled as interacting cellular particles (CPs) and the time evolution of the
multicellular system is determined by integrating the equations of motion of
all CPs. The KMC and CPD methods are tested and compared by simulating two
experimentally well known phenomena: (1) cell-sorting within an aggregate
formed by two types of cells with different adhesivities, and (2) fusion of two
spherical aggregates of living cells.Comment: 11 pages, 7 figures; submitted to Phys Rev
Aspiration of biological viscoelastic drops
Spherical cellular aggregates are in vitro systems to study the physical and
biophysical properties of tissues. We present a novel approach to characterize
the mechanical properties of cellular aggregates using micropipette aspiration
technique. We observe an aspiration in two distinct regimes, a fast elastic
deformation followed by a viscous flow. We develop a model based on this
viscoelastic behavior to deduce the surface tension, viscosity, and elastic
modulus. A major result is the increase of the surface tension with the applied
force, interpreted as an effect of cellular mechanosensing.Comment: 4 pages, 4 figures
Undulation Instability of Epithelial Tissues
Treating the epithelium as an incompressible fluid adjacent to a viscoelastic
stroma, we find a novel hydrodynamic instability that leads to the formation of
protrusions of the epithelium into the stroma. This instability is a candidate
for epithelial fingering observed in vivo. It occurs for sufficiently large
viscosity, cell-division rate and thickness of the dividing region in the
epithelium. Our work provides physical insight into a potential mechanism by
which interfaces between epithelia and stromas undulate, and potentially by
which tissue dysplasia leads to cancerous invasion.Comment: 4 pages, 3 figure
Scaling of Traction Forces with Size of Cohesive Cell Colonies
To understand how the mechanical properties of tissues emerge from
interactions of multiple cells, we measure traction stresses of cohesive
colonies of 1-27 cells adherent to soft substrates. We find that traction
stresses are generally localized at the periphery of the colony and the total
traction force scales with the colony radius. For large colony sizes, the
scaling appears to approach linear, suggesting the emergence of an apparent
surface tension of order 1E-3 N/m. A simple model of the cell colony as a
contractile elastic medium coupled to the substrate captures the spatial
distribution of traction forces and the scaling of traction forces with the
colony size.Comment: 5 pages, 3 figure
- …
