2,312 research outputs found
Vapor pressure isotope fractionation effects in planetary atmospheres: application to deuterium
The impact of the vapor pressure difference between deuterated and
nondeuterated condensing molecules in planetary atmospheres is quantitatively
assessed. This difference results in a loss of deuterium in the vapor phase
above the condensation level. In Titan, Uranus and Neptune, the effect on CH3D
is too subtle to alter current D/H ratio determinations. In Mars, the effect
can induce a large depletion of HDO, starting about one scale height above the
condensation level. Although the current infrared measurements of the D/H ratio
appear to be almost unaffected, the intensity of disk-averaged millimetric HDO
lines can be modified by about 10%. The effect is much stronger in limb
sounding, and can be easily detected from orbiter observations.Comment: 24 pages, 1 table, 6 figures. Paper accepted for publication in
ICARU
Investigation of laser ablated ZnO thin films grown with Zn metal target: a structural study
High quality ZnO thin films were gown using the pulsed laser deposition
technique on (0001) AlO substrates in an oxidizing atmosphere, using a
Zn metallic target. We varied the growth conditions such as the deposition
temperature and the oxygen pressure. First, using a battery of techniques such
as x-rays diffraction, Rutherford Backscattering spectroscopy and atomic force
microscopy, we evaluated the structural quality, the stress and the degree of
epitaxy of the films. Second, the relations between the deposition conditions
and the structural properties, that are directly related to the nature of the
thin films, are discussed qualitatively. Finally, a number of issues on how to
get good-quality ZnO films are addressed.Comment: To be published in Jour. Appl. Phys. (15 August 2004
Individual and collective behavior of dust particles in a protoplanetary nebula
We study the interaction between gas and dust particles in a protoplanetary
disk, comparing analytical and numerical results. We first calculate
analytically the trajectories of individual particles undergoing gas drag in
the disk, in the asymptotic cases of very small particles (Epstein regime) and
very large particles (Stokes regime). Using a Boltzmann averaging method, we
then infer their collective behavior. We compare the results of this analytical
formulation against numerical computations of a large number of particles.
Using successive moments of the Boltzmann equation, we derive the equivalent
fluid equations for the average motion of the particles; these are
intrinsically different in the Epstein and Stokes regimes. We are also able to
study analytically the temporal evolution of a collection of particles with a
given initial size-distribution provided collisions are ignored.Comment: 15 pages, 9 figures, submitted to Ap
On the stratified dust distribution of the GG Tau circumbinary ring
Our objective is to study the vertical dust distribution in the circumbinary
ring of the binary system GG Tau and to search for evidence of stratification,
one of the first steps expected to occur during planet formation.
We present a simultaneous analysis of four scattered light images spanning a
range of wavelength from 800 nm to 3800 nm and compare them with (i) a
parametric prescription for the vertical dust stratification, and (ii) with the
results of SPH bi-fluid hydrodynamic calculations.
The parametric prescription and hydrodynamical calculations of stratification
both reproduce the observed brightness profiles well. These models also provide
a correct match for the observed star/ring integrated flux ratio. Another
solution with a well-mixed, but ``exotic'', dust size distribution also matches
the brightness profile ratios but fails to match the star/ring flux ratio.
These results give support to the presence of vertical stratification of the
dust in the ring of GG Tau and further predict the presence of a radial
stratification also.Comment: 9 pages, 11 figures. Accepted for publication in A&
The effect of a planet on the dust distribution in a 3D protoplanetary disk
Aims: We investigate the behaviour of dust in protoplanetary disks under the
action of gas drag in the presence of a planet. Our goal is twofold: to
determine the spatial distribution of dust depending on grain size and planet
mass, and therefore to provide a framework for interpretation of coming
observations and future studies of planetesimal growth. Method: We numerically
model the evolution of dust in a protoplanetary disk using a two-fluid (gas +
dust) Smoothed Particle Hydrodynamics (SPH) code, which is non-self-gravitating
and locally isothermal. The code follows the three dimensional distribution of
dust in a protoplanetary disk as it interacts with the gas via aerodynamic
drag. In this work, we present the evolution of a minimum mass solar nebula
(MMSN) disk comprising 1% dust by mass in the presence of an embedded planet.
We run a series of simulations which vary the grain size and planetary mass to
see how they affect the resulting disk structure. Results: We find that gap
formation is much more rapid and striking in the dust layer than in the gaseous
disk and that a system with a given stellar, disk and planetary mass will have
a completely different appearance depending on the grain size. For low mass
planets in our MMSN disk, a gap can open in the dust disk while not in the gas
disk. We also note that dust accumulates at the external edge of the planetary
gap and speculate that the presence of a planet in the disk may enhance the
formation of a second planet by facilitating the growth of planetesimals in
this high density region.Comment: 13 pages, 12 figures. Accepted for publication in Astronomy &
Astrophysic
Recommended from our members
HDO And SO2 Thermal Mapping On Venus II. The So2 Spatial Distribution Above And Within The Clouds
Sulfur dioxide and water vapor, two key species of Venus photochemistry, are known to exhibit significant spatial and temporal variations above the cloud top. In particular, ground-based thermal imaging spectroscopy at high spectral resolution, achieved on Venus in January 2012, has shown evidence for strong SO2 variations on timescales shorter than a day. We have continued our observing campaign using the TEXES high-resolution imaging spectrometer at the NASA InfraRed Telescope Facility to map sulfur dioxide over the disk of Venus at two different wavelengths, 7 mu m (already used in the previous study) and 19 mu m. The 7 mu m radiation probes the top of the H2SO4 cloud, while the 19 mu m radiation probes a few kilometers below within the cloud. Observations took place on October 4 and 5, 2012. Both HDO and SO2 lines are identified in our 7-mu m spectra and SO2 is also easily identified at 19 mu m. The CO2 lines at 7 and 19 mu m are used to infer the thermal structure. An isothermal/inversion layer is present at high latitudes (above 60 N and S) in the polar collars, which was not detected in October 2012. The enhancement of the polar collar in October 2012 is probably due to the fact that the morning terminator is observed, while the January data probed the evening terminator. As observed in our previous run, the HDO map is relatively uniform over the disk of Venus, with a mean mixing ratio of about 1 ppm. In contrast, the SO2 maps at 19 mu m show intensity variations by a factor of about 2 over the disk within the cloud, less patchy than observed at the cloud top at 7 mu m. In addition, the SO2 maps seem to indicate significant temporal changes within an hour. There is evidence for a cutoff in the SO2 vertical distribution above the cloud top, also previously observed by SPICAV/SOIR aboard Venus Express and predicted by photochemical models.NASA NNX-08AE38AIRTF AST-0607312, AST-0708074Astronom
Planet gaps in the dust layer of 3D protoplanetary disks. II. Observability with ALMA
[Abridged] Aims: We provide predictions for ALMA observations of planet gaps
that account for the specific spatial distribution of dust that results from
consistent gas+dust dynamics. Methods: In a previous work, we ran full 3D,
two-fluid Smoothed Particle Hydrodynamics (SPH) simulations of a planet
embedded in a gas+dust T Tauri disk for different planet masses and grain
sizes. In this work, the resulting dust distributions are passed to the Monte
Carlo radiative transfer code MCFOST to construct synthetic images in the ALMA
wavebands. We then use the ALMA simulator to produce images that include
thermal and phase noise for a range of angular resolutions, wavelengths, and
integration times, as well as for different inclinations, declinations and
distances. We also produce images which assume that gas and dust are well mixed
with a gas-to-dust ratio of 100 to compare with previous ALMA predictions, all
made under this hypothesis. Results: Our findings clearly demonstrate the
importance of correctly incorporating the dust dynamics. We show that the gap
carved by a 1 M_J planet orbiting at 40 AU is visible with a much higher
contrast than the well-mixed assumption would predict. In the case of a 5 M_J
planet, we clearly see a deficit in dust emission in the inner disk, and point
out the risk of interpreting the resulting image as that of a transition disk
with an inner hole if observed in unfavorable conditions. Planet signatures are
fainter in more distant disks but declination or inclination to the
line-of-sight have little effect on ALMA's ability to resolve the gaps.
Conclusions: ALMA has the potential to see signposts of planets in disks of
nearby star-forming regions. We present optimized observing parameters to
detect them in the case of 1 and 5 M_J planets on 40 AU orbits.Comment: 15 pages, 21 figures, accepted by Astronomy & Astrophysics, a higher
resolution version of the paper is available at
http://www-obs.univ-lyon1.fr/labo/perso/jean-francois.gonzalez/Papers/Gaps_ALMA.pd
3D SPH simulations of grain growth in protoplanetary disks
We present the first results of the treatment of grain growth in our 3D, two-fluid (gas+dust) SPH code describing protoplanetary disks. We implement a scheme able to reproduce the variation of grain sizes caused by a variety of physical processes and test it with the analytical expression of grain growth given by Stepinski & Valageas (1997) in simulations of a typical T Tauri disk around a one solar mass star. The results are in agreement with a turbulent growing process and validate the method. We are now able to simulate the grain growth process in a protoplanetary disk given by a more realistic physical description, currently under development. We discuss the implications of the combined effect of grain growth and dust vertical settling and radial migration on subsequent planetesimal formatio
- …
