21 research outputs found
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
The problem of survival from an algorithmic point of view
AbstractOur goal is to go deeper into the many writings on Behavior-Based Artificial Intelligence [Meyer et al., From Animals to Animats, MIT Press, 1992] and to understand the interest—rather than the mechanisms—of learning. Our intention is to study the complexity of the behavior of living beings from a theoretical point of view. To do so, we introduce formal environments that model the survival issue. Then we prove in this formal context that, many times, the extra cost imposed by the conservation of information, even if it is relevant, is greater than the benefit of knowing it. Consequently, in order to survive in our abstract worlds, one must manage his knowledge in a way that fits the evolution of the environment. Furthermore, physiological observations corroborate these purely theoretical results. Thus, we use these results to design a parallel system in which each module manages its knowledge in a specific way. This enables us to obtain a virtual creature whose behavior evokes that of a biological hen
Treatment of Resistant Schizophrenics With Extreme High Dosage Fluphenazine Hydrochloride
Live-bearing cockroach genome reveals convergent evolutionary mechanisms linked to viviparity in insects and beyond
Insects provide an unparalleled opportunity to link genomic changes with the rise of novel phenotypes, given tremendous variation in the numerous and complex adaptations displayed across the group. Among these numerous and complex adaptations, live-birth has arisen repeatedly and independently in insects and across the tree of life, suggesting this is one of the most common types of convergent evolution among animals. We sequenced the genome and transcriptome of the Pacific beetle-mimic cockroach, the only truly viviparous cockroach, and performed comparative analyses including two other viviparous insect lineages, the tsetse and aphids, to unravel the genomic basis underlying the transition to viviparity in insects. We identified pathways experiencing adaptive evolution, common in all viviparous insects surveyed, involved in uro-genital remodeling, maternal control of embryo development, tracheal system, and heart development. Our findings suggest the essential role of those pathways for the development of placenta-like structure enabling embryo development and nutrition. Viviparous transition seems also to be accompanied by the duplication of genes involved in eggshell formation. Our findings from the viviparous cockroach and tsetse reveal that genes involved in uterine remodeling are up-regulated and immune genes are down-regulated during the course of pregnancy. These changes may facilitate structural changes to accommodate developing young and protect them from the mothers immune system. Our results denote a convergent evolution of live-bearing in insects and suggest similar adaptive mechanisms occurred in vertebrates, targeting pathways involved in eggshell formation, uro-genital remodeling, enhanced tracheal and heart development, and reduced immunity
Live-bearing cockroach genome reveals convergent evolutionary mechanisms linked to viviparity in insects and beyond
Live birth (viviparity) has arisen repeatedly and independently among animals. We sequenced the genome and transcriptome of the viviparous Pacific beetle-mimic cockroach and performed comparative analyses with two other viviparous insect lineages, tsetse flies and aphids, to unravel the basis underlying the transition to viviparity in insects. We identified pathways undergoing adaptive evolution for insects, involved in urogenital remodeling, tracheal system, heart development, and nutrient metabolism. Transcriptomic analysis of cockroach and tsetse flies revealed that uterine remodeling and nutrient production are increased and the immune response is altered during pregnancy, facilitating structural and physiological changes to accommodate and nourish the progeny. These patterns of convergent evolution of viviparity among insects, together with similar adaptive mechanisms identified among vertebrates, highlight that the transition to viviparity requires changes in urogenital remodeling, enhanced tracheal and heart development (corresponding to angiogenesis in vertebrates), altered nutrient metabolism, and shifted immunity in animal systems.</p
