335 research outputs found

    Profile Shapes for Optically Thick X-ray Emission Lines from Stellar Winds

    Get PDF
    We consider the consequences of appreciable line optical depth for the profile shape of X-ray emission lines formed in stellar winds. The hot gas is thought to arise in distributed wind shocks, and the line formation is predominantly via collisional excitation followed by radiative decay. Such lines are often modelled as optically thin, but the theory has difficulty matching resolved X-ray line profiles. We suggest that for strong lines of abundant metals, newly created photons may undergo resonance scattering, modifying the emergent profile. Using Sobolev theory in a spherically symmetric wind, we show that thick-line resonance scattering leads to emission profiles that still have blueshifted centroids like the thin lines, but which are considerably less asymmetric in appearance. We focus on winds in the constant-expansion domain, and derive an analytic form for the profile shape in the limit of large line and photoabsorptive optical depths. Our theory is applied to published {\it Chandra} observations of the O star ζ\zeta Pup.Comment: ApJ, in pres

    On the multispacecraft determination of periodic surface wave phase speeds and wavelengths

    Get PDF
    Observations of surface waves on the magnetopause indicate a wide range of phase velocities and wavelengths. Their multispacecraft analysis allows a more precise determination of wave characteristics than ever before and reveal shortcomings of approximations to the phase speed that take a predetermined fraction of the magnetosheath speed or the average flow velocity in the boundary layer. We show that time lags between two or more spacecraft can give a qualitative upper estimate, and we confirm the unreliability of flow approximations often used by analyzing a few cases. Using two‐point distant magnetic field observations and spectral analysis of the tailward magnetic field component, we propose an alternative method to estimate the wavelength and phase speed at a single spacecraft from a statistical fit to the data at the other site

    3D electron density distributions in the solar corona during solar minima: assessment for more realistic solar wind modeling

    Get PDF
    Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996-1997 and 2008-2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the results between the two solar minima and with two magnetohydrodynamic models. First, we confirm that the values of the density distribution in thermodynamic models are more realistic than in polytropic ones. The tomography provides more accurate distributions in the polar regions, and we find that the density in tomographic and thermodynamic solutions varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We deduce that tomography offers reliable density distributions in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how they are magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus.Comment: 23 pages, 9 figure

    Fast magnetoacoustic waves in curved coronal loops. II, Tunneling modes

    Get PDF
    Aims. Fast magnetoacoustic waves in curved coronal loops are investigated and the role of lateral leakage in wave damping, which includes the mechanism of wave tunneling, is explored. Methods. A coronal loop is modeled as a curved, magnetic slab in the zero plasma-β limit. In this model and for an arbitrary piece-wise continuous power law equilibrium density profile, the wave equation governing linear vertically polarised fast magnetoacoustic waves is solved analytically. An associated dispersion relation is derived and the frequencies and eigenfunctions of the wave modes are characterised. Results. For some equilibria, the waves are shown to be all damped due to lateral leakage. It is demonstrated that waves either leak straight out into the external medium or have to overcome an evanescent barrier, which is linked to wave tunneling. The wave solutions consist of alternating vertically polarised kink and sausage branches. Fast kink oscillations may have a non-zero density perturbation when averaged across the loop. The calculated damping rate of fast magnetoacoustic kink oscillations is shown to be consistent with related numerical simulations and show that lateral leakage may explain the observed damping of (vertically polarised) fast magnetoacoustic kink oscillations

    Quasi-periodic pulsations in the gamma-ray emission of a solar flare

    Get PDF
    Quasi-periodic pulsations (QPPs) of gamma-ray emission with a period of about 40 s are found in a single loop X-class solar flare on 2005 January 1 at photon energies up to 2-6 MeV with the SOlar Neutrons and Gamma-rays (SONG) experiment aboard the CORONAS-F mission. The oscillations are also found to be present in the microwave emission detected with the Nobeyama Radioheliograph, and in the hard X-ray and low energy gamma-ray channels of RHESSI. Periodogram and correlation analysis shows that the 40 s QPPs of microwave, hard X-ray, and gamma-ray emission are almost synchronous in all observation bands. Analysis of the spatial structure of hard X-ray and low energy (80-225 keV) gamma-ray QPP with RHESSI reveals synchronous while asymmetric QPP at both footpoints of the flaring loop. The difference between the averaged hard X-ray fluxes coming from the two footpoint sources is found to oscillate with a period of about 13 s for five cycles in the highest emission stage of the flare. The proposed mechanism generating the 40 s QPP is a triggering of magnetic reconnection by a kink oscillation in a nearby loop. The 13 s periodicity could be produced by the second harmonics of the sausage mode of the flaring loop

    First magnetic seismology of the CME reconnection outflow layer in the low corona with 2.5-D MHD simulations of the Kelvin-Helmholtz instability

    Get PDF
    Copyright © 2013 American Geophysical UnionFor conditions observed in the low corona, we perform 2.5-D magnetohydrodynamic (MHD) simulations of the Kelvin-Helmholtz instability (KHI) at the surface of a coronal mass ejection (CME). We match the observed time development of the KHI with simulated growth from 110 MHD experiments representing a parametric range of realistic magnetic field strengths and orientations and two key values of the velocity shear, ΔV, inferred from observations. The results are field strengths Be≈ 8–9 G and Bs≈ 10–11 G in the CME reconnection outflow layer and the surrounding sheath, respectively, for ΔV≈770kms−1; for nearly perpendicular orientation (1° tilt) of Bs with respect to the flow plane, Be can be tilted between 3 and 10°; tilting Bs up to 15° would slow the growth of the KHI by too much. Our simulations also reveal hidden dynamics and structure of the CME ejecta layer such as plasma mixing via reconnection in the vortices

    Seismology of curved coronal loops with vertically polarised transverse oscillations

    Get PDF
    Aims. Using a model of vertically polarised fast magnetoacoustic waves in curved coronal loops, the method of coronal seismology is applied to observations of transverse loop oscillations. Methods. A coronal loop is modeled as a curved magnetic slab in the zero plasma-β limit. For an arbitrary piece-wise continuous power law equilibrium density profile, the dispersion relation governing linear vertically polarised fast magnetoacoustic kink waves is derived. The ways in which this model can be used for coronal seismology are explored and applied to two observational examples. Results. The Alfvén speed and equilibrium density profile are determined from observations. It is shown that the mechanism of lateral leakage of fast magnetoacoustic kink oscillations described in this model is efficient. In fact, the damping is so efficient that in order to match predicted values with observational ones, either the loop needs to be highly contrasted or the transverse Alfvén speed profile needs to be close to linear. Possible improvements to make the modeling of lateral wave leakage in loops more realistic, allowing a lower damping efficiency, are discussed

    Leakage of long-period oscillations from the chromosphere to the corona

    Get PDF
    Copyright © 2011 ESO / EDP SciencesLong-period oscillations in a coronal diffuse structure are detected with the Transition Region And Coronal Explorer (TRACE). The EUV images of the NOAA active region 8253 are available in 171 Å and 195 Å bandpasses from 30 June to 4 July 1998. The average intensity variation is found to be connected with the CCD temperature, which varies with the orbital motion of the spacecraft. Hence, oscillations with the orbital period and its higher harmonics appear as artifacts in the light curves. After the exclusion of the orbital effects, we identified several long-period oscillations in the diffuse fan-like structure of the active region. Similar periodicities were detected in the radio emission from the chromospheric part of that active region, observed with the ground-based Nobeyama Radioheliograph (NoRH) in the 17 GHz channel. It was found that 0.221, 0.312 and 0.573 mHz oscillations were present in both EUV emission lines in the corona and the radio signal from the sunspot in the chromosphere, just beneath the active region. From the frequency values, the 1st and 3rd detected oscillations could be associated with the l = 2, n = −3 or l = 3, n = −5 and l = 1 gravity-driven solar interior modes, respectively. The appearance of these oscillations in the coronal part of the active region can be connected with the wave leakage or the evanescence of chromospheric oscillations

    Ultra-long-period oscillations in EUV filaments near to eruption: Two-wavelength correlation and seismology

    Get PDF
    Copyright © 2009 American Astronomical Society / IOP PublishingWe investigate whether or not ultra-long-period oscillations in EUV filaments can be related to their eruption. We report new observations of long-period (~10-30 hr) oscillatory motions in an apparently quiescent filament, as it crosses the solar disk in a 12 minute cadence SOHO/Extreme-Ultraviolet Imaging Telescope (EIT) 195 Å uninterrupted data set. This data set is chosen to explore characteristics of the filament oscillations depending on its eruptive behavior, which is observed while the filament is still on the disk. The periods are found to increase in a near-stable regime prior to eruption. For the two sequences reported so far, we compare and link the EUV filament oscillations with pulsations in full-disk solar EUV irradiance from SOHO/CELIAS/SEM 304 Å flux measurements. In intervals with stationary periods, we find that the 304 Å pulsations and the 195 Å filament oscillations have similar periodicities, but are phase-shifted by about a quarter of period. The two-wavelength correlation serves to show that, when the filament is the dominant dynamical feature but can no longer be tracked on the disk, the full-disk irradiance may provide a mean to identify the period increase prior to the filament eruption. We use the periods thus obtained to estimate the height increase of filaments' suspending coronal magnetic field lines, based on a magnetohydrodynamic (MHD) wave interpretation of the oscillations. The results are consistent with changes in prominence heights detected off-limb and thus support the seismological tool employed. Other interpretations connected with thermal overstability or MHD piston effect are possible. These theoretical predictions however do not explain the quarter-period shift between the two EUV-wavelength signals. In any case, the detected variations may provide a powerful diagnostic tool for the forecasting of prominence eruptions

    Four-Spacecraft Magnetic Curvature and Vorticity Analyses on Kelvin-Helmholtz Waves in MHD Simulations

    Get PDF
    This is the final version of the article. Available from AGU/Wiley via the DOI in this record.Four-spacecraft missions are probing the Earth's magnetospheric environment with high potential for revealing spatial and temporal scales of a variety of in situ phenomena. The techniques allowed by these four spacecraft include the calculation of vorticity and the magnetic curvature analysis (MCA), both of which have been used in the study of various plasma structures. Motivated by curved magnetic field and vortical structures induced by Kelvin- Helmholtz (KH) waves, we investigate the robustness of the MCA and vorticity techniques when increasing (regular) tetrahedron sizes, to interpret real data. Here for the first time, we test both techniques on a 2.5-D MHD simulation of KH waves at the magnetopause. We investigate, in particular, the curvature and flow vorticity across KH vortices and produce time series for static spacecraft in the boundary layers. The combined results of magnetic curvature and vorticity further help us to understand the development of KH waves. In particular, first, in the trailing edge, the magnetic curvature across the magnetopause points in opposite directions, in the wave propagation direction on the magnetosheath side and against it on the magnetospheric side. Second, the existence of a "turnover layer" in the magnetospheric side, defined by negative vorticity for the duskside magnetopause, which persists in the saturation phase, is reminiscent of roll-up history. We found significant variations in the MCA measures depending on the size of the tetrahedron. This study lends support for cross-scale observations to better understand the nature of curvature and its role in plasma phenomena.R. K. acknowledges financial support from CEMPS at the University of Exeter. C. F. acknowledges financial support from the UK Science and Technology Facilities Council (STFC) under her Advanced Fellowship ST/I003649
    corecore