277 research outputs found
Anatomical and functional characterization of neocortical circuits involved in transforming whisker sensory processing into goal-directed licking
The choice of an action upon perception of an external stimulus, arriving at a sensory organ of an animal, depends on previous experiences and outcomes throughout its life. In the rodent brain, the underlying mechanisms involved in simple sensorimotor transformations, such as the detection of a whisker stimulus through goal-directed licking, still remain largely unknown. In this thesis, using as a model the mouse somatosensory system, I explored the anatomical and functional properties of neuronal circuits at different stages of this cortical processing. To start with, using state-of-the-art viral tracing techniques, I investigated the thalamocortical circuits relaying sensory signals to the primary and secondary whisker somatosensory cortices (wS1, wS2). Challenging the "classical" views, the results indicated two streams of information carrying whisker-selective tactile signals. The principal trigeminal nucleus (Pr5) innervates the ventral posterior medial nucleus of the thalamus (VPM) and finally reaching layer 4 of wS1 while the spinal trigeminal nucleus (Sp5) through the rostral part of the posterior medial (POm) thalamus drives the layer 4 of wS2. Finally, a caudal part of the POm, which does not receive brainstem input, innervates layer 1 and layer 5A. Apart from their anatomical differences, those pathways conveyed distinct whisker sensory signals during goal-directed behaviors. Afterwards, I studied the cortical control of jaw and tongue movements during licking for rewards, using multisensory and multimotor whisker detection tasks. The data revealed a frontal tongue-jaw primary motor area (tjM1) which is necessary and encodes for directional licking, independently of the sensory stimulus type, shedding light on how the neocortex orchestrates the main motor output of the animal. Subsequently, I focused on changes in the L2/3 neuronal networks of wS1 after learning of a whisker stimulus. Using as a benchmark a novel "fast" learning and reward-dependent whisker detection task, I carried out inactivations of wS1 during different stages of learning and chronic two-photon (2P) calcium imaging in the L2/3 of the C2 barrel column. The inactivation results indicated that wS1 is indispensable for the acquisition of the novel stimulus and the execution of the task at expert levels. Moreover, the neural data suggested a learning-induced and "long-lasting" enhancement in the whisker sensory responses even when animals were unmotivated to lick. At a network level, a re-organization of the neuronal circuits was observed at different timescales with some of the alterations accompanying the rapid changes in the animal behavior. Additionally, the changes in the whisker sensory responses of neurons in wS1, after learning, were projection-pathway specific with wS2-projecting neurons showing higher whisker responses than whisker primary motor cortex (wM1)-projecting ones. In the final part, acknowledging the importance of a better characterization of the cortical-cortical communication of wS1, I described recent technical advancements in neuronal reconstructions. In vivo single-cell electroporation combined with 2P tomography and registration to a digital atlas, demonstrated the diversity of the projection targets of neurons in the L2/3 of wS1. Overall, I presented different results which contribute to a pre-existing body of research and help to decipher fundamentals and yet highly complex neural computations of the mammalian brain
Prebiotic Organic Microstructures
Micro- and sub-micrometer spheres, tubules and fiber-filament soft structures have been synthesized in our experiments conducted with 3 MeV proton irradiations of a mixture of simple inorganic constituents, CO, N2 and H2O. We analysed the irradiation products, with scanning electron microscopy (SEM) and atomic force microscopy (AFM). These laboratory organic structures produced wide variety of proteinous and non-proteinous amino acids after HCl hydrolysis. The enantiomer analysis for D-, L- alanine confirmed that the amino acids were abiotically synthesized during the laboratory experiment. Considering hydrothermal activity, the presence of CO2 and H2, of a ferromagnesian silicate mineral environment, of an Earth magnetic field which was much less intense during Archean times than nowadays and consequently of a proton excitation source which was much more abundant, we propose that our laboratory organic microstructures might be synthesized during Archean times. We show similarities in morphology and in formation with some terrestrial Archean microstructures and we suggest that some of the observed Archean carbon spherical and filamentous microstructures might be composed of abiogenic organic molecules. We further propose a search for such prebiotic organic signatures on Mars. This article has been posted on Nature precedings on 21 July 2010 [1]. Extinct radionuclides as source of excitation have been replaced by cosmic radiations which were much more intense 3.5 Ga ago because of a much less intense Earth magnetic field. The new version of the article has been presented at the ORIGINS conference in Montpellier in july 2011 [2] and has since been published in Origins of Life and Evolution of Biospheres 42 (4) 307-316, 2012. 
DOI: 10.1007/s11084-012-9290-5 


Dynamic drivers of a shallow-water hydrothermal vent ecogeochemical system (Milos, Eastern Mediterranean)
Shallow-water hydrothermal vents share many characteristics with their deep-sea analogs. However, despite ease of access, much less is known about the dynamics of these systems. Here, we report on the spatial and
temporal chemical variability of a shallow-water vent system at Paleochori Bay, Milos Island, Greece, and on the bacterial and archaeal diversity of associated sandy sediments. Our multi-analyte voltammetric profiles of dissolved O2 and hydrothermal tracers (e.g. Fe2+, FeSaq, Mn2+) on sediment cores taken along a transect in hydrothermally affected sediments indicate three different areas: the central vent area (highest temperature) with a deeper penetration of oxygen into the sediment, and a lack of dissolved Fe2+ and Mn2+; a middle area (0.5
m away) rich in dissolved Fe2+ and Mn2+ (exceeding 2 mM) and high free sulfide with potential for microbial sulfide oxidation as suggested by the presence of white mats at the sediment surface; and, finally, an outer rim
area (1-1.5 m away) with lower concentrations of Fe2+ and Mn2+ and higher signals of FeSaq, indicating an aged hydrothermal fluid contribution. In addition, high-frequency temperature series and continuous in situ H2S
measurements with voltammetric sensors over a 6-day time period at a distance 0.5 m away from the vent center showed substantial temporal variability in temperature (32 to 46 ºC ) and total sulfide (488 to 1329 �M) in the upper sediment layer. Analysis of these data suggests that tides, winds, and abrupt geodynamic events generate intermittent mixing conditions lasting for several hours to days. Despite substantial variability, the concentration of sulfide available for chemoautotrophic microbes remained high. These findings are consistent with the predominance of Epsilonproteobacteria in the hydrothermally influenced sediments Diversity and metagenomic analyses on sediments and biofilm collected along a transect from the center to the outer rim of the vent provide
further insights on the metabolic activities and the environmental factors shaping these microbial communities. Both bacterial and archaeal diversity changed along the transect as well as with sediment depth, in line with the
geochemical measurements. Beside the fact that it harbors an unexpected diversity of yet undescribed bacteria and archaea, this site is also a relevant model to investigate the link between ecological and abiotic dynamics in such
instable hydrothermal environments. Our results provide evidence for the importance of transient geodynamic and hydrodynamic events in the dynamics and distribution of chemoautotrophic communities in the hydrothermally influenced sediments of Paleochori Bay
Chemical composition of diffuse flow vent fluids collected from the Crab Spa site at East Pacific Rise during the AT26-10 oceanographic expedition, Jan. 2014 (Microbial Communities at Deep-Sea Vents project)
Dataset: vent chemical composition-Crab SpaThis dataset includes chemical composition (Cl, SO4, Na, K, Mg, and Ca concentrations) of diffuse flow vent fluids collected from the Crab Spa (9.8398º N, 104.2913º W) site at East Pacific Rise during the RV/Atlantic AT26-10 oceanographic expedition, Jan. 2014. Samples were collected at 2500 m depth by using isobaric gas-tight samplers (IGT, WHOI). Upon transfer onboard R/V Atlantis, the sampled diffuse flow fluids were incubated at 250 bars. Refer to the dataset https://www.bco-dmo.org/dataset/628993 for information regarding these incubations. For a complete list of measurements, refer to the supplemental document 'Field_names.pdf', and a full dataset description is included in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: http://www.bco-dmo.org/dataset/529026NSF Division of Ocean Sciences (NSF OCE) OCE-113660
Results from shipboard high-pressure incubations of diffuse flow vent fluids collected from the Crab Spa and Alvinella sites at East Pacific Rise during the AT26-10 expedition, Jan. 2014 (Microbial Communities at Deep-Sea Vents project)
Dataset: Incubation in diffuse flow vent fluids - Crab SpaThis dataset includes results from shipboard high-pressure incubations of diffuse flow vent fluids collected from the Crab Spa (9.8398º N, 104.2913º W) and Alvinella (9.8398º N, 104.2915º W) sites at East Pacific Rise during the AT26-10 oceanographic expedition in January 2014. Reported parameters include dates and time elapsed, flow rate, temperature, pressure, and pH, and concentrations of NO3, NH4, H2, H2S, CH4. For a complete list of measurements, refer to the supplemental document 'Field_names.pdf', and a full dataset description is included in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: http://www.bco-dmo.org/dataset/628993NSF Division of Ocean Sciences (NSF OCE) OCE-113660
Geology, sulfide geochemistry and supercritical venting at the Beebe Hydrothermal Vent Field, Cayman Trough
The Beebe Vent Field (BVF) is the world's deepest known hydrothermal system, at 4960m below sea level. Located on the Mid-Cayman Spreading Centre, Caribbean, the BVF hosts high temperature (∼401°C) ‘black smoker' vents that build Cu, Zn and Au-rich sulphide mounds and chimneys. The BVF is highly gold-rich, with Au values up to 93 ppm and an average Au:Ag ratio of 0.15. Gold precipitation is directly associated with diffuse flow through ‘beehive' chimneys. Significant mass-wasting of sulphide material at the BVF, accompanied by changes in metal content, results in metaliferous talus and sediment deposits. Situated on very thin (2-3km thick) oceanic crust, at an ultraslow spreading centre, the hydrothermal system circulates fluids to a depth of ∼1.8km in a basement that is likely to include a mixture of both mafic and ultramafic lithologies. We suggest hydrothermal interaction with chalcophile-bearing sulphides in the mantle rocks, together with precipitation of Au in beehive chimney structures, has resulted in the formation of a Au-rich volcanogenic massive sulphide (VMS) deposit. With its spatial distribution of deposit materials and metal contents, the BVF represents a modern day analogue for basalt hosted, Au-rich VMS systems. This article is protected by copyright. All rights reserved
Geogenic and atmospheric sources for volatile organic compounds in fumarolic emissions from Mt. Etna and Vulcano Island (Sicily, Italy)
In this paper, fluid source(s) and processes controlling the chemical composition of volatile organic compounds (VOCs) in gas discharges from Mt. Etna and Vulcano Island(Sicily, Italy) were investigated. The main composition of the Etnean and Volcano gas emissions is produced by mixing, to various degrees, of magmatic and hydrothermal components. VOCs are dominated by alkanes, alkenes and aromatics, with minor, though significant, concentrations of O-, S- and Cl(F)-substituted compounds. The main mechanism for the production of alkanes is likely related to pyrolysis of organic-matterbearing sediments that interact with the ascending magmatic fluids. Alkanes are then converted to alkene and aromatic compounds via catalytic reactions (dehydrogenation and dehydroaromatization, respectively). Nevertheless, an abiogenic origin for the light hydrocarbons cannot be ruled out. Oxidative processes of hydrocarbons at relatively high temperatures and oxidizing conditions, typical of these volcanic-hydrothermal fluids, may explain the production of alcohols, esters, aldehydes, as well as O- and S-bearing heterocycles. By comparing the concentrations of hydrochlorofluorocarbons (HCFCs) in the fumarolic discharges with respect to those of background air, it is possible to highlight that they have a geogenic origin likely due to halogenation of both methane and alkenes. Finally, chlorofluorocarbon (CFC) abundances appear to be consistent with background air, although the strong air contamination that affects the Mt. Etna fumaroles may mask a possible geogenic contribution for these compounds. On the other hand, no CFCs were detected in the Vulcano gases, which are characterized by low air contribution. Nevertheless, a geogenic source for these compounds cannot be excluded on the basis of the present data
Kinetics of H2–O2–H2O redox equilibria and formation of metastable H2O2 under low temperature hydrothermal conditions
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 75 (2011): 1594-1607, doi:10.1016/j.gca.2010.12.020.Hydrothermal experiments were conducted to evaluate the kinetics of H2(aq)
oxidation in the homogeneous H2-O2-H2O system at conditions reflecting
subsurface/near-seafloor hydrothermal environments (55-250 oC and 242-497 bar). The
kinetics of the water-forming reaction that controls the fundamental equilibrium between
dissolved H2(aq) and O2(aq), are expected to impose significant constraints on the redox
gradients that develop when mixing occurs between oxygenated seawater and high-
temperature anoxic vent fluid at near-seafloor conditions. Experimental data indicate that,
indeed, the kinetics of H2(aq)-O2(aq) equilibrium become slower with decreasing
temperature, allowing excess H2(aq) to remain in solution. Sluggish reaction rates of H2(aq)
oxidation suggest that active microbial populations in near-seafloor and subsurface
environments could potentially utilize both H2(aq) and O2(aq), even at temperatures lower
than 40 oC due to H2(aq) persistence in the seawater/vent fluid mixtures. For these H2-O2
disequilibrium conditions, redox gradients along the seawater/hydrothermal fluid mixing
interface are not sharp and microbially-mediated H2(aq) oxidation coupled with a lack of
other electron acceptors (e.g. nitrate) could provide an important energy source available
at low-temperature diffuse flow vent sites.
More importantly, when H2(aq)-O2(aq) disequilibrium conditions apply, formation
of metastable hydrogen peroxide is observed. The yield of H2O2(aq) synthesis appears to
be enhanced under conditions of elevated H2(aq)/O2(aq) molar ratios that correspond to
abundant H2(aq) concentrations. Formation of metastable H2O2 is expected to affect the
distribution of dissolved organic carbon (DOC) owing to the existence of an additional
strong oxidizing agent. Oxidation of magnetite and/or Fe++ by hydrogen peroxide could
also induce formation of metastable hydroxyl radicals (•OH) through Fenton-type
reactions, further broadening the implications of hydrogen peroxide in hydrothermal environments.This research was conducted with partial support from the NSF
OCE-0752221 and the Geophysical Laboratory Postdoctoral Fellowship. We would also
like to acknowledge contributions by the W.M. Keck Foundation and Shell towards
supporting the hydrothermal lab at the Geophysical Lab. SMS acknowledges support
from NSF OCE-0452333 and the Alfried-Krupp Wissenschaftskolleg Greifswald
(Germany), while WES acknowledges support from NSF grants OCE-0549457 and OCE-
0813861
Experimental investigation of single carbon compounds under hydrothermal conditions
Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 70 (2006): 446-460, doi:10.1016/j.gca.2005.09.002.The speciation of carbon in subseafloor hydrothermal systems has direct implications for the maintenance of life in present day vent ecosystems and possibly the origin of life on early Earth. Carbon monoxide is of particular interest because it represents a key reactant during the abiotic synthesis of reduced carbon compounds via Fischer-Tropsch-type processes. Laboratory experiments were conducted to constrain reactions that regulate the speciation of aqueous single carbon species under hydrothermal conditions and determine kinetic parameters for the oxidation of CO according to the water water-gas shift reaction (CO2 + H2 = CO + H2O). Aqueous fluids containing added CO2, CO, HCOOH, NaHCO3, NaHCOO, and H2 were heated at 150, 200, and 300°C and 350 bar in flexible cell hydrothermal apparatus, and the abundance of carbon compounds were monitored as a function of time. Variations in fluid chemistry suggest that the reduction of CO2 to CH3OH under aqueous conditions occurs via a stepwise process that involves the formation of HCOOH, CO, and possibly CH2O, as reaction intermediaries. Kinetic barriers that inhibit the reduction of CH3OH to CH4 allow the accumulation of reaction intermediaries in solution at high concentrations regulated by metastable equilibrium. Reaction of CO2 to form CO involves a two-step process in which CO2 initially undergoes a reduction step to HCOOH which subsequently dehydrates to form CO. Both reactions proceed readily in either direction. A preexponential factor of 1.35 x 106 s-1 and an activation energy of 102 KJ mol-1 were retrieved from the experimental results for the oxidation of CO to CO2.
Reactions rates amongst single carbon compounds during the experiments suggests SCO2 (CO2 + HCO3- + CO3=), CO, SHCOOH (HCOOH + HCOO-), and CH3OH may reach states of redox-dependent metastable thermodynamic equilibrium in subseafloor and other hydrothermal systems. The abundance of CO under equilibrium conditions, which in turn may influence the likelihood for abiotic synthesis via Fischer-Tropsch-type processes, is strongly dependent on temperature, the total carbon content of the fluid, and host-rock lithology. If crustal residence times following the mixing of high-temperature hydrothermal fluids with cool seawater are sufficiently long, reequilibration of aqueous carbon can result in the generation of additional reduced carbon species such as HCOOH and CH3OH and the consumption of H2. The present study suggests that abiotic reactions involving aqueous carbon compounds in hydrothermal systems are sufficiently rapid to influence metabolic pathways utilized by organisms that inhabit vent environments.This study was supported by the National Science Foundation grant #OCE-0136954, the Office of Basic Energy Sciences, U.S. Department of Energy grant #DEFG0297ER14746, and by NASA Exobiology grant #NAG5-7696 and Origins grant #NNG04GG23G
- …
