70 research outputs found

    Prebiotic Organic Microstructures

    Get PDF
    Micro- and sub-micrometer spheres, tubules and fiber-filament soft structures have been synthesized in our experiments conducted with 3 MeV proton irradiations of a mixture of simple inorganic constituents, CO, N2 and H2O. We analysed the irradiation products, with scanning electron microscopy (SEM) and atomic force microscopy (AFM). These laboratory organic structures produced wide variety of proteinous and non-proteinous amino acids after HCl hydrolysis. The enantiomer analysis for D-, L- alanine confirmed that the amino acids were abiotically synthesized during the laboratory experiment. Considering hydrothermal activity, the presence of CO2 and H2, of a ferromagnesian silicate mineral environment, of an Earth magnetic field which was much less intense during Archean times than nowadays and consequently of a proton excitation source which was much more abundant, we propose that our laboratory organic microstructures might be synthesized during Archean times. We show similarities in morphology and in formation with some terrestrial Archean microstructures and we suggest that some of the observed Archean carbon spherical and filamentous microstructures might be composed of abiogenic organic molecules. We further propose a search for such prebiotic organic signatures on Mars. This article has been posted on Nature precedings on 21 July 2010 [1]. Extinct radionuclides as source of excitation have been replaced by cosmic radiations which were much more intense 3.5 Ga ago because of a much less intense Earth magnetic field. The new version of the article has been presented at the ORIGINS conference in Montpellier in july 2011 [2] and has since been published in Origins of Life and Evolution of Biospheres 42 (4) 307-316, 2012. 
DOI: 10.1007/s11084-012-9290-5 

&#xa

    Hydrothermal circulation within the Endeavour Segment, Juan de Fuca Ridge

    Get PDF
    Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q05002, doi:10.1029/2009GC002957.Areas of the seafloor at mid-ocean ridges where hydrothermal vents discharge are easily recognized by the dramatic biological, physical, and chemical processes that characterize such sites. Locations where seawater flows into the seafloor to recharge hydrothermal cells within the crustal reservoir are by contrast almost invisible but can be indirectly identified by a systematic grid of conductive heat flow measurements. An array of conductive heat flow stations in the Endeavour axial valley of the Juan de Fuca Ridge has identified recharge zones that appear to represent a nested system of fluid circulation paths. At the scale of an axial rift valley, conductive heat flow data indicate a general cross-valley fluid flow, where seawater enters the shallow subsurface crustal reservoir at the eastern wall of the Endeavour axial valley and undergoes a kilometer of horizontal transit beneath the valley floor, finally exiting as warm hydrothermal fluid discharge on the western valley bounding wall. Recharge zones also have been identified as located within an annular ring of very cold seafloor around the large Main Endeavour Hydrothermal Field, with seawater inflow occurring within faults that surround the fluid discharge sites. These conductive heat flow data are consistent with previous models where high-temperature fluid circulation cells beneath large hydrothermal vent fields may be composed of narrow vertical cylinders. Subsurface fluid circulation on the Endeavour Segment occurs at various crustal depths in three distinct modes: (1) general east to west flow across the entire valley floor, (2) in narrow cylinders that penetrate deeply to high-temperature heat sources, and (3) supplying low-temperature diffuse vents where seawater is entrained into the shallow uppermost crust by the adjacent high-temperature cylindrical systems. The systematic array of conductive heat flow measurements over the axial valley floor averaged ∼150 mW/m2, suggesting that only about 3% of the total energy flux of ocean crustal formation is removed by conductive heat transfer, with the remainder being dissipated to overlying seawater by fluid advection.Funding was provided by NSF grants OCE0318566 and OCE0241294 and NSF/SGER grant OCE0902626

    The relative abundances of resolved l2 CH 2 D 2 and 13 CH 3 D and mechanisms controlling isotopic bond ordering in abiotic and biotic methane gases

    Get PDF
    We report measurements of resolved 12CH2D2 and 13CH3D at natural abundances in a variety of methane gases produced naturally and in the laboratory. The ability to resolve 12CH2D2 from 13CH3D provides unprecedented insights into the origin and evolution of CH4. The results identify conditions under which either isotopic bond order disequilibrium or equilibrium are expected. Where equilibrium obtains, concordant D12CH2D2 and D13CH3D temperatures can be used reliably for thermometry. We find that concordant temperatures do not always match previous hypotheses based on indirect estimates of temperature of formation nor temperatures derived from CH4/H2 D/H exchange, underscoring the importance of reliable thermometry based on the CH4 molecules themselves. Where D12CH2D2 and D13CH3D values are inconsistent with thermodynamic equilibrium, temperatures of formation derived from these species are spurious. In such situations, while formation temperatures are unavailable, disequilibrium isotopologue ratios nonetheless provide novel information about the formation mechanism of the gas and the presence or absence of multiple sources or sinks. In particular, disequilibrium isotopologue ratios may provide the means for differentiating between methane produced by abiotic synthesis vs. biological processes. Deficits in 12CH2D2 compared with equilibrium values in CH4 gas made by surface-catalyzed abiotic reactions are so large as to point towards a quantum tunneling origin. Tunneling also accounts for the more moderate depletions in 13CH3D that accompany the low 12CH2D2 abundances produced by abiotic reactions. The tunneling signature may prove to be an important tracer of abiotic methane formation, especially where it is preserved by dissolution of gas in cool hydrothermal systems (e.g., Mars). Isotopologue signatures of abiotic methane production can be erased by infiltration of microbial communities, and D12CH2D2 values are a key tracer of microbial recycling.Published235-2646A. Geochimica per l'ambienteJCR Journa

    Asteroid (101955) Bennu in the Laboratory: Properties of the Sample Collected by OSIRIS-REx

    Full text link
    On 24 September 2023, the NASA OSIRIS-REx mission dropped a capsule to Earth containing approximately 120 g of pristine carbonaceous regolith from Bennu. We describe the delivery and initial allocation of this asteroid sample and introduce its bulk physical, chemical, and mineralogical properties from early analyses. The regolith is very dark overall, with higher-reflectance inclusions and particles interspersed. Particle sizes range from sub-micron dust to a stone about 3.5 cm long. Millimeter-scale and larger stones typically have hummocky or angular morphologies. A subset of the stones appears mottled by brighter material that occurs as veins and crusts. Hummocky stones have the lowest densities and mottled stones have the highest. Remote sensing of the surface of Bennu detected hydrated phyllosilicates, magnetite, organic compounds, carbonates, and scarce anhydrous silicates, all of which the sample confirms. We also find sulfides, presolar grains, and, less expectedly, Na-rich phosphates, as well as other trace phases. The sample composition and mineralogy indicate substantial aqueous alteration and resemble those of Ryugu and the most chemically primitive, low-petrologic-type carbonaceous chondrites. Nevertheless, we find distinct hydrogen, nitrogen, and oxygen isotopic compositions, and some of the material we analyzed is enriched in fluid-mobile elements. Our findings underscore the value of sample return, especially for low-density material that may not readily survive atmospheric entry, and lay the groundwork for more comprehensive analyses.Comment: 73 pages, 22 figure

    The old, unique C1 chondrite Flensburg – Insight into the first processes of aqueous alteration, brecciation, and the diversity of water-bearing parent bodies and lithologies

    Get PDF
    On September 12, 2019 at 12:49:48 (UT) a bolide was observed by hundreds of eye-witnesses from the Netherlands, Germany, Belgium, Denmark and the UK. One day later a small meteorite stone was found by accident in Flensburg. The presence of short-lived cosmogenic radionuclides with half-lives as short as 16 days proves the recent exposure of the found object to cosmic rays in space linking it clearly to the bolide event. An exceptionally short exposure time of ∼5000 years was determined. The 24.5 g stone has a fresh black fusion crust, a low density of <2 g/cm3, and a magnetic susceptibility of logχ = 4.35 (χ in 10−9 m3/kg). The rock consists of relict chondrules and clusters of sulfide and magnetite grains set in a fine-grained matrix. The most abundant phases are phyllosilicates. Carbonates (∼3.9 vol.%) occur as calcites, dolomites, and a Na-rich phase. The relict chondrules (often surrounded by sulfide laths) are free of anhydrous silicates and contain abundant serpentine. Lithic clasts are also surrounded by similar sulfide laths partly intergrown with carbonates. 53Mn-53Cr ages of carbonates in Flensburg indicate that brecciation and contemporaneous formation of the pyrrhotite-carbonate intergrowths by hydrothermal activities occurred no later than 4564.6 ± 1.0 Ma (using the angrite D'Orbigny as the Mn-Cr age anchor). This corresponds to 2.6 ± 1.0 or 3.4 ± 1.0 Ma after formation of CAIs, depending on the exact absolute age of CAIs. This is the oldest dated evidence for brecciation and carbonate formation, which likely occurred during parent body growth and incipient heating due to decay of 26Al. In the three oxygen isotope diagram, Flensburg plots at the 16O-rich end of the CM chondrite field and in the transition field to CV-CK-CR chondrites. The mass-dependent Te isotopic composition of Flensburg is slightly different from mean CM chondrites and is most similar to those of the ungrouped C2 chondrite Tagish Lake. On the other hand, 50Ti and 54Cr isotope anomalies indicate that Flensburg is similar to CM chondrites, as do the ∼10 wt.% H2O of the bulk material. Yet, the bulk Zn, Cu, and Pb concentrations are about 30% lower than those of mean CM chondrites. The He, Ne, and Ar isotopes of Flensburg show no solar wind contribution; its trapped noble gas signature is similar to that of CMs with a slightly lower concentration of 20Netr. Based on the bulk H, C, and N elemental abundances and isotopic compositions, Flensburg is unique among chondrites, because it has the lightest bulk H and N isotopic compositions of any type 1 or 2 chondrite investigated so far. Moreover, the number of soluble organic compounds in Flensburg is even lower than that of the brecciated CI chondrite Orgueil. The extraordinary significance of Flensburg is evident from the observation that it represents the oldest chondrite sample in which the contemporaneous episodes of aqueous alteration and brecciation have been preserved. The characterization of a large variety of carbonaceous chondrites with different alteration histories is important for interpreting returned samples from the OSIRIS-REx and Hayabusa 2 missions.Copyright © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). The attached file is the published version of the article.NHM Repositor

    Young volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic Ridge

    Get PDF
    The effect of volcanic activity on submarine hydrothermal systems has been well documented along fast- and intermediate-spreading centers but not from slow-spreading ridges. Indeed, volcanic eruptions are expected to be rare on slow-spreading axes. Here we report the presence of hydrothermal venting associated with extremely fresh lava flows at an elevated, apparently magmatically robust segment center on the slow-spreading southern Mid-Atlantic Ridge near 5°S. Three high-temperature vent fields have been recognized so far over a strike length of less than 2 km with two fields venting phase-separated, vapor-type fluids. Exit temperatures at one of the fields reach up to 407°C, at conditions of the critical point of seawater, the highest temperatures ever recorded from the seafloor. Fluid and vent field characteristics show a large variability between the vent fields, a variation that is not expected within such a limited area. We conclude from mineralogical investigations of hydrothermal precipitates that vent-fluid compositions have evolved recently from relatively oxidizing to more reducing conditions, a shift that could also be related to renewed magmatic activity in the area. Current high exit temperatures, reducing conditions, low silica contents, and high hydrogen contents in the fluids of two vent sites are consistent with a shallow magmatic source, probably related to a young volcanic eruption event nearby, in which basaltic magma is actively crystallizing. This is the first reported evidence for direct magmatic-hydrothermal interaction on a slow-spreading mid-ocean ridge

    Monoaminergic signaling during mammalian NREM sleep - Recent insights and next-level questions.

    No full text
    Subcortical neuromodulatory activity in the mammalian brain enables flexible wake behaviors, which are essential for survival in an ever-changing external environment. With the suppression of such behaviors in sleep, this activity is, on average, much reduced. Recent discoveries, enabled by unprecedented technical advancements, challenge the long-standing view that monoaminergic systems-noradrenaline (NA), dopamine (DA), and serotonin (5-HT)-remain largely inactive during sleep. This review highlights recent technological and scientific progress in this field, summarizing evidence that monoaminergic signaling in the brain supplements sleep with essential wake-related functions. Stress and/or neuropsychiatric conditions negatively impact on monoaminergic signaling, which can lead to sleep disruptions. Furthermore, subcortical neuromodulatory systems are vulnerable to neurodegenerative pathologies, which implies them in sleep disruptions at early stages of disease. We propose that future research will be well-invested in elucidating the spatiotemporal organization, cellular mechanisms, and functional relevance of neuromodulatory dynamics across species, and in identifying the molecular and physiological processes that sustain their integrity throughout the lifespan

    Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge

    Get PDF
    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki’s Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition
    corecore