42 research outputs found
Inverse spin-s portrait and representation of qudit states by single probability vectors
Using the tomographic probability representation of qudit states and the
inverse spin-portrait method, we suggest a bijective map of the qudit density
operator onto a single probability distribution. Within the framework of the
approach proposed, any quantum spin-j state is associated with the
(2j+1)(4j+1)-dimensional probability vector whose components are labeled by
spin projections and points on the sphere. Such a vector has a clear physical
meaning and can be relatively easily measured. Quantum states form a convex
subset of the 2j(4j+3) simplex, with the boundary being illustrated for qubits
(j=1/2) and qutrits (j=1). A relation to the (2j+1)^2- and
(2j+1)(2j+2)-dimensional probability vectors is established in terms of spin-s
portraits. We also address an auxiliary problem of the optimum reconstruction
of qudit states, where the optimality implies a minimum relative error of the
density matrix due to the errors in measured probabilities.Comment: 23 pages, 4 figures, PDF LaTeX, submitted to the Journal of Russian
Laser Researc
Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics
Symmetric informationally complete positive operator valued measures
(SIC-POVMs) are studied within the framework of the probability representation
of quantum mechanics. A SIC-POVM is shown to be a special case of the
probability representation. The problem of SIC-POVM existence is formulated in
terms of symbols of operators associated with a star-product quantization
scheme. We show that SIC-POVMs (if they do exist) must obey general rules of
the star product, and, starting from this fact, we derive new relations on
SIC-projectors. The case of qubits is considered in detail, in particular, the
relation between the SIC probability representation and other probability
representations is established, the connection with mutually unbiased bases is
discussed, and comments to the Lie algebraic structure of SIC-POVMs are
presented.Comment: 22 pages, 1 figure, LaTeX, partially presented at the Workshop
"Nonlinearity and Coherence in Classical and Quantum Systems" held at the
University "Federico II" in Naples, Italy on December 4, 2009 in honor of
Prof. Margarita A. Man'ko in connection with her 70th birthday, minor
misprints are corrected in the second versio
Identification of an Intracellular Site of Prion Conversion
Prion diseases are fatal, neurodegenerative disorders in humans and animals and are characterized by the accumulation of an abnormally folded isoform of the cellular prion protein (PrPC), denoted PrPSc, which represents the major component of infectious scrapie prions. Characterization of the mechanism of conversion of PrPC into PrPSc and identification of the intracellular site where it occurs are among the most important questions in prion biology. Despite numerous efforts, both of these questions remain unsolved. We have quantitatively analyzed the distribution of PrPC and PrPSc and measured PrPSc levels in different infected neuronal cell lines in which protein trafficking has been selectively impaired. Our data exclude roles for both early and late endosomes and identify the endosomal recycling compartment as the likely site of prion conversion. These findings represent a fundamental step towards understanding the cellular mechanism of prion conversion and will allow the development of new therapeutic approaches for prion diseases
