1,113 research outputs found

    Thermally driven circulation in a region of complex topography: comparison of wind-profiling radar measurements and MM5 numerical predictions

    Get PDF
    The diurnal variation of regional wind patterns in the complex terrain of Central Italy was investigated for summer fair-weather conditions and winter time periods using a radar wind profiler. The profiler is located on a site where interaction between the complex topography and land-surface produces a variety of thermally and dynamically driven wind systems. The observational data set, collected for a period of one year, was used first to describe the diurnal evolution of thermal driven winds, second to validate the Mesoscale Model 5 (MM5) that is a three-dimensional numerical model. This type of analysis was focused on the near-surface wind observation, since thermally driven winds occur in the lower atmosphere. According to the valley wind theory expectations, the site – located on the left sidewall of the valley (looking up valley) – experiences a clockwise turning with time. Same characteristics in the behavior were established in both the experimental and numerical results. <P style="line-height: 20px;"> Because the thermally driven flows can have some depth and may be influenced mainly by model errors, as a third step the analysis focuses on a subset of cases to explore four different MM5 Planetary Boundary Layer (PBL) parameterizations. The reason is to test how the results are sensitive to the selected PBL parameterization, and to identify the better parameterization if it is possible. For this purpose we analysed the MM5 output for the whole PBL levels. The chosen PBL parameterizations are: 1) Gayno-Seaman; 2) Medium-Range Forecast; 3) Mellor-Yamada scheme as used in the ETA model; and 4) Blackadar

    Combining role-play with interactive simulation to motivate informed climate action: Evidence from the World Climate simulation

    Get PDF
    Climate change communication efforts grounded in the information deficit model have largely failed to close the gap between scientific and public understanding of the risks posed by climate change. In response, simulations have been proposed to enable people to learn for themselves about this complex and politically charged topic. Here we assess the impact of a widely-used simulation, World Climate, which combines a socially and emotionally engaging role-play with interactive exploration of climate change science through the C-ROADS climate simulation model. Participants take on the roles of delegates to the UN climate negotiations and are challenged to create an agreement that meets international climate goals. Their decisions are entered into C-ROADS, which provides immediate feedback about expected global climate impacts, enabling them to learn about climate change while experiencing the social dynamics of negotiations. We assess the impact of World Climate by analyzing pre- and post-survey results from >2,000 participants in 39 sessions in eight nations. We find statistically significant gains in three areas: (i) knowledge of climate change causes, dynamics and impacts; (ii) affective engagement including greater feelings of urgency and hope; and (iii) a desire to learn and do more about climate change. Contrary to the deficit model, gains in urgency were associated with gains in participants’ desire to learn more and intent to act, while gains in climate knowledge were not. Gains were just as strong among American participants who oppose government regulation of free markets–a political ideology that has been linked to climate change denial in the US–suggesting the simulation’s potential to reach across political divides. The results indicate that World Climate offers a climate change communication tool that enables people to learn and feel for themselves, which together have the potential to motivate action informed by science.National Science Foundation (U.S.) (grant DUE-124558)National Science Foundation (U.S.) (grant ICEER-1701062

    Time spent with cats is never wasted: Lessons learned from feline acromegalic cardiomyopathy, a naturally occurring animal model of the human disease

    Get PDF
    <div><p>Background</p><p>In humans, acromegaly due to a pituitary somatotrophic adenoma is a recognized cause of increased left ventricular (LV) mass. Acromegalic cardiomyopathy is incompletely understood, and represents a major cause of morbidity and mortality. We describe the clinical, echocardiographic and histopathologic features of naturally occurring feline acromegalic cardiomyopathy, an emerging disease among domestic cats.</p><p>Methods</p><p>Cats with confirmed hypersomatotropism (IGF-1>1000ng/ml and pituitary mass; n = 67) were prospectively recruited, as were two control groups: diabetics (IGF-1<800ng/ml; n = 24) and healthy cats without known endocrinopathy or cardiovascular disease (n = 16). Echocardiography was performed in all cases, including after hypersomatotropism treatment where applicable. Additionally, tissue samples from deceased cats with hypersomatotropism, hypertrophic cardiomyopathy and age-matched controls (n = 21 each) were collected and systematically histopathologically reviewed and compared.</p><p>Results</p><p>By echocardiography, cats with hypersomatotropism had a greater maximum LV wall thickness (6.5mm, 4.1–10.1mm) than diabetic (5.9mm, 4.2–9.1mm; Mann Whitney, p<0.001) or control cats (5.2mm, 4.1–6.5mm; Mann Whitney, p<0.001). Left atrial diameter was also greater in cats with hypersomatotropism (16.6mm, 13.0–29.5mm) than in diabetic (15.4mm, 11.2–20.3mm; Mann Whitney, p<0.001) and control cats (14.0mm, 12.6–17.4mm; Mann Whitney, p<0.001). After hypophysectomy and normalization of IGF-1 concentration (n = 20), echocardiographic changes proved mostly reversible. As in humans, histopathology of the feline acromegalic heart was dominated by myocyte hypertrophy with interstitial fibrosis and minimal myofiber disarray.</p><p>Conclusions</p><p>These results demonstrate cats could be considered a naturally occurring model of acromegalic cardiomyopathy, and as such help elucidate mechanisms driving cardiovascular remodeling in this disease.</p></div

    Altered serum thyrotropin concentrations in dogs with primary hypoadrenocorticism before and during treatment

    Full text link
    BACKGROUND: Thyrotropin (TSH) can be increased in humans with primary hypoadrenocorticism (HA) before glucocorticoid treatment. Increase in TSH is a typical finding of primary hypothyroidism and both diseases can occur concurrently (Schmidt's syndrome); therefore, care must be taken in assessing thyroid function in untreated human patients with HA. OBJECTIVE: Evaluate whether alterations in cTSH can be observed in dogs with HA in absence of primary hypothyroidism. ANIMALS: Thirty dogs with newly diagnosed HA, and 30 dogs in which HA was suspected but excluded based on a normal ACTH stimulation test (controls) were prospectively enrolled. METHODS: cTSH and T4 concentrations were determined in all dogs and at selected time points during treatment (prednisolone, fludrocortisone, or DOCP) in dogs with HA. RESULTS: cTSH concentrations ranged from 0.01 to 2.6 ng/mL (median 0.29) and were increased in 11/30 dogs with HA; values in controls were all within the reference interval (range: 0.01-0.2 ng/dL; median 0.06). There was no difference in T4 between dogs with increased cTSH (T4 range 1.0-2.1; median 1.3 μg/dL) compared to those with normal cTSH (T4 range 0.5-3.4, median 1.4 μg/dL; P=0.69) and controls (T4 range 0.3-3.8, median 1.8 μg/dL; P=0.35). After starting treatment, cTSH normalized after 2-4 weeks in 9 dogs and after 3 and 4 months in 2 without thyroxine supplementation. CONCLUSIONS AND CLINICAL RELEVANCE: Evaluation of thyroid function in untreated dogs with HA can lead to misdiagnosis of hypothyroidism; treatment with glucocorticoids for up to 4 months can be necessary to normalize cTSH
    corecore