714 research outputs found
Microscopic measurement of the linear compressibilities of two-dimensional fatty acid mesophases
The linear compressibility of two-dimensional fatty acid mesophases has
determined by grazing incidence x-ray diffraction. Surface pressure vs
molecular area isotherms were reconstructed from these measurements, and the
linear compressibility (relative distortion along a given direction for
isotropic applied stress) was determined both in the sample plane and in a
plane normal to the aliphatic chain director (transverse plane). The linear
compressibilities range over two orders of magnitude from 0.1 to 10 m/N and are
distributed depending on their magnitude in 4 different sets which we are able
to associate with different molecular mechanisms. The largest compressibilities
(10m/N) are observed in the tilted phases. They are apparently independent of
the chain length and could be related to the reorganization of the headgroup
hydrogen-bounded network, whose role should be revalued. Intermediate
compressibilities are observed in phases with quasi long-range order
(directions normal to the molecular tilt in L_2 or L_2' phases, S phase), and
could be related to the ordering of these phases. The lowest compressibilities
are observed in the solid untilted CS phase and for 1 direction of the S and
L_2'' phases. They are similar to the compressibility of crystalline polymers
and correspond to the interactions between methyl groups in the crystal.
Finally, negative compressibilities are observed in the transverse plane for
L_2' and L_2'' phases and can be traced to subtle reorganizations upon
untilting.Comment: 24 pages, 17 figure
Quantifying spin Hall angles from spin pumping: Experiments and Theory
Spin Hall effects intermix spin and charge currents even in nonmagnetic
materials and, therefore, ultimately may allow the use of spin transport
without the need for ferromagnets. We show how spin Hall effects can be
quantified by integrating permalloy/normal metal (N) bilayers into a coplanar
waveguide. A dc spin current in N can be generated by spin pumping in a
controllable way by ferromagnetic resonance. The transverse dc voltage detected
along the permalloy/N has contributions from both the anisotropic
magnetoresistance (AMR) and the spin Hall effect, which can be distinguished by
their symmetries. We developed a theory that accounts for both. In this way, we
determine the spin Hall angle quantitatively for Pt, Au and Mo. This approach
can readily be adapted to any conducting material with even very small spin
Hall angles.Comment: 4 pages, 4 figure
Coulomb-U and magnetic moment collapse in -Pu
The around-the-mean-field version of the LDA+U method is applied to
investigate electron correlation effects in -Pu. It yields a
non-magnetic ground state of Pu, and provides a good agreement with
experimental equilibrium volume, bulk modulus and explains important features
of the photoelectron spectra
Precision of readout at the hunchback gene: analyzing short transcription time traces in living fly embryos
The simultaneous expression of the hunchback gene in the numerous nuclei of
the developing fly embryo gives us a unique opportunity to study how
transcription is regulated in living organisms. A recently developed MS2-MCP
technique for imaging nascent messenger RNA in living Drosophila embryos allows
us to quantify the dynamics of the developmental transcription process. The
initial measurement of the morphogens by the hunchback promoter takes place
during very short cell cycles, not only giving each nucleus little time for a
precise readout, but also resulting in short time traces of transcription.
Additionally, the relationship between the measured signal and the promoter
state depends on the molecular design of the reporting probe. We develop an
analysis approach based on tailor made autocorrelation functions that overcomes
the short trace problems and quantifies the dynamics of transcription
initiation. Based on live imaging data, we identify signatures of bursty
transcription initiation from the hunchback promoter. We show that the
precision of the expression of the hunchback gene to measure its position along
the anterior-posterior axis is low both at the boundary and in the anterior
even at cycle 13, suggesting additional post-transcriptional averaging
mechanisms to provide the precision observed in fixed embryos
Molecular Dynamics Study of the Nematic-Isotropic Interface
We present large-scale molecular dynamics simulations of a nematic-isotropic
interface in a system of repulsive ellipsoidal molecules, focusing in
particular on the capillary wave fluctuations of the interfacial position. The
interface anchors the nematic phase in a planar way, i.e., the director aligns
parallel to the interface. Capillary waves in the direction parallel and
perpendicular to the director are considered separately. We find that the
spectrum is anisotropic, the amplitudes of capillary waves being larger in the
direction perpendicular to the director. In the long wavelength limit, however,
the spectrum becomes isotropic and compares well with the predictions of a
simple capillary wave theory.Comment: to appear in Phys. Rev.
Use of a Semi-field System to Evaluate the Efficacy of Topical Repellents under user Conditions Provides a Disease Exposure free Technique Comparable with Field Data.
Before topical repellents can be employed as interventions against arthropod bites, their efficacy must be established. Currently, laboratory or field tests, using human volunteers, are the main methods used for assessing the efficacy of topical repellents. However, laboratory tests are not representative of real life conditions under which repellents are used and field-testing potentially exposes human volunteers to disease. There is, therefore, a need to develop methods to test efficacy of repellents under real life conditions while minimizing volunteer exposure to disease. A lotion-based, 15% N, N-Diethyl-3-methylbenzamide (DEET) repellent and 15% DEET in ethanol were compared to a placebo lotion in a 200 sq m (10 m x 20 m) semi-field system (SFS) against laboratory-reared Anopheles arabiensis mosquitoes and in full field settings against wild malaria vectors and nuisance-biting mosquitoes. The average percentage protection against biting mosquitoes over four hours in the SFS and field setting was determined. A Poisson regression model was then used to determine relative risk of being bitten when wearing either of these repellents compared to the placebo. Average percentage protection of the lotion-based 15% DEET repellent after four hours of mosquito collection was 82.13% (95% CI 75.94-88.82) in the semi-field experiments and 85.10% (95% CI 78.97-91.70) in the field experiments. Average percentage protection of 15% DEET in ethanol after four hours was 71.29% (CI 61.77-82.28) in the semi-field system and 88.24% (84.45-92.20) in the field. Semi-field evaluation results were comparable to full-field evaluations, indicating that such systems could be satisfactorily used in measuring efficacy of topically applied mosquito repellents, thereby avoiding risks of exposure to mosquito-borne pathogens, associated with field testing
Soliton pair dynamics in patterned ferromagnetic ellipses
Confinement alters the energy landscape of nanoscale magnets, leading to the
appearance of unusual magnetic states, such as vortices, for example. Many
basic questions concerning dynamical and interaction effects remain unanswered,
and nanomagnets are convenient model systems for studying these fundamental
physical phenomena. A single vortex in restricted geometry, also known as a
non-localized soliton, possesses a characteristic translational excitation mode
that corresponds to spiral-like motion of the vortex core around its
equilibrium position. Here, we investigate, by a microwave reflection
technique, the dynamics of magnetic soliton pairs confined in lithographically
defined, ferromagnetic Permalloy ellipses. Through a comparison with
micromagnetic simulations, the observed strong resonances in the subgigahertz
frequency range can be assigned to the translational modes of vortex pairs with
parallel or antiparallel core polarizations. Vortex polarizations play a
negligible role in the static interaction between two vortices, but their
effect dominates the dynamics.Comment: supplemental movies on
http://www.nature.com/nphys/journal/v1/n3/suppinfo/nphys173_S1.htm
Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress
Acknowledgments We thank Alexander Johnson (yhb1D/D), Karl Kuchler (sodD/D mutants), Janet Quinn (hog1D/D, hog1/cap1D/D, trx1D/D) and Peter Staib (ssu1D/D) for providing mutant strains. We acknowledge helpful discussions with our colleagues from the Microbial Pathogenicity Mechanisms Department, Fungal Septomics and the Microbial Biochemistry and Physiology Research Group at the Hans Kno¨ll Institute (HKI), specially Ilse D. Jacobsen, Duncan Wilson, Sascha Brunke, Lydia Kasper, Franziska Gerwien, Sea´na Duggan, Katrin Haupt, Kerstin Hu¨nniger, and Matthias Brock, as well as from our partners in the FINSysB Network. Author Contributions Conceived and designed the experiments: PM HW IMB AJPB OK BH. Performed the experiments: PM CD HW. Analyzed the data: PM HW IMB AJPB OK BH. Wrote the paper: PM HW OK AJPB BH.Peer reviewedPublisher PD
- …
