87 research outputs found
United classification of cosmic gamma-ray bursts and their counterparts
United classification of gamma-ray bursts and their counterparts is
established on the basis of measured characteristics: photon energy E and
emission duration T. The founded interrelation between the mentioned
characteristics of events consists in that, as the energy increases, the
duration decreases (and vice versa). The given interrelation reflects the
nature of the phenomenon and forms the E-T diagram, which represents a natural
classification of all observed events in the energy range from 10E9 to 10E-6 eV
and in the corresponding interval of durations from about 10E-2 up to 10E8 s.
The proposed classification results in the consequences, which are principal
for the theory and practical study of the phenomenon.Comment: Keywords Gamma rays: burst
Gamma-Ray Bursts: Jets and Energetics
The relativistic outflows from gamma-ray bursts are now thought to be
narrowly collimated into jets. After correcting for this jet geometry there is
a remarkable constancy of both the energy radiated by the burst and the kinetic
energy carried by the outflow. Gamma-ray bursts are still the most luminous
explosions in the Universe, but they release energies that are comparable to
supernovae. The diversity of cosmic explosions appears to be governed by the
fraction of energy that is coupled to ultra-relativistic ejecta.Comment: Paper presented at "The Restless High-Energy Universe", May 5-8 2003
Royal Tropical Institute, Amsterda
Gamma Ray Bursts as Probes of Quantum Gravity
Gamma ray bursts (GRBs) are short and intense pulses of -rays
arriving from random directions in the sky. Several years ago Amelino-Camelia
et al. pointed out that a comparison of time of arrival of photons at different
energies from a GRB could be used to measure (or obtain a limit on) possible
deviations from a constant speed of light at high photons energies. I review
here our current understanding of GRBs and reconsider the possibility of
performing these observations.Comment: Lectures given at the 40th winter school of theretical physics:
Quantum Gravity and Phenomenology, Feb. 2004 Polan
Magnetar outbursts: an observational review
Transient outbursts from magnetars have shown to be a key property of their
emission, and one of the main way to discover new sources of this class. From
the discovery of the first transient event around 2003, we now count about a
dozen of outbursts, which increased the number of these strongly magnetic
neutron stars by a third in six years. Magnetar outbursts might involve their
multi-band emission resulting in an increased activity from radio to hard
X-ray, usually with a soft X-ray flux increasing by a factor of 10-1000 with
respect to the quiescent level. A connected X-ray spectral evolution is also
often observed, with a spectral softening during the outburst decay. The flux
decay times vary a lot from source to source, ranging from a few weeks to
several years, as also the decay law which can be exponential-like, a power-law
or even multiple power-laws can be required to model the flux decrease. We
review here on the latest observational results on the multi-band emission of
magnetars, and summarize one by one all the transient events which could be
studied to date from these sources.Comment: 34 pages, 6 figures. Chapter of the Springer Book ASSP 7395
"High-energy emission from pulsars and their systems", proceeding of the Sant
Cugat Forum on Astrophysics (12-16 April 2010). Review updated to January
201
Guiding the Way to Gamma-Ray Sources: X-ray Studies of Supernova Remnants
Supernova remnants have long been suggested as a class of potential
counterparts to unidentified gamma-ray sources. The mechanisms by which such
gamma-rays can arise may include emission from a pulsar associated with a
remnant, or a variety of processes associated with energetic particles
accelerated by the SNR shock. Imaging and spectral observations in the X-ray
band can be used to identify properties of the remnants that lead to gamma-ray
emission, including the presence of pulsar-driven nebulae, nonthermal X-ray
emission from the SNR shells, and the interaction of SNRs with dense
surrounding material.Comment: 16 pages, 11 figures, To appear in the proceedings of the workshop:
"The Nature of the Unidentified Galactic Gamma-Ray Sources" held at INAOE,
Mexico, October 2000, (A.Carraminana, O. Reiner and D. Thompson, eds.
What fraction of stars formed in infrared galaxies at high redshift?
Star formation happens in two types of environment: ultraviolet-bright
starbursts (like 30 Doradus and HII galaxies at low redshift and Lyman-break
galaxies at high redshift) and infrared-bright dust-enshrouded regions (which
may be moderately star-forming like Orion in the Galaxy or extreme like the
core of Arp 220). In this work I will estimate how many of the stars in the
local Universe formed in each type of environment, using observations of
star-forming galaxies at all redshifts at different wavelengths and of the
evolution of the field galaxy population.Comment: 7 pages, 0 figs, to appear in proceedings of "Starbursts - From 30
Doradus to Lyman break galaxies", edited by Richard de Grijs and Rosa M.
Gonzalez Delgado, published by Kluwe
The upstream magnetic field of collisionless GRB shocks: constraint by Fermi-LAT observations
Long-lived >100 MeV emission has been a common feature of most Fermi-LAT
detected gamma-ray bursts (GRBs), e.g., detected up to ~10^3s in long GRBs
080916C and 090902B and ~10^2s in short GRB 090510. This emission is consistent
with being produced by synchrotron emission of electrons accelerated to high
energy by the relativistic collisionless shock propagating into the weakly
magnetized medium. Here we show that this high-energy afterglow emission
constrains the preshock magnetic field to satisfy 1(n/1cc)^{9/8}
mG<B<10^2(n/1cc)^{3/8}mG, where n is the preshock density, more stringent than
the previous constraint by X-ray afterglow observations on day scale. This
suggests that the preshock magnetic field is strongly amplified, most likely by
the streaming of high energy shock accelerated particles.Comment: 9 pages, JCAP accepte
Towards a population of HMXB/NS microquasars as counterparts of low-latitude unidentified EGRET sources
The discovery of the microquasar LS 5039 well within the 95% conficence
contour of the Unidentified EGRET Source (UES) 3EG J1824-1514 was a major step
towards the possible association between microquasars (MQs) and UESs. The
recent discovery of precessing relativistic radio jets in LS I +61 303, a
source associated for long time with 2CG 135+01 and with the UES 3EG
J0241+6103, has given further support to this idea. Finally, the very recently
proposed association between the microquasar candidate AX J1639.0-4642 and the
UES 3EG J1639-4702 points towards a population of High Mass X-ray Binary
(HMXB)/Neutron Star (NS) microquasars as counterparts of low-latitude
unidentified EGRET sources.Comment: 12 pages, 7 figures. Proceedings of the Conference "The
Multiwavelength Approach to Unidentified Gamma-ray Sources", to appear in the
journal Astrophysics and Space Scienc
Search for correlation between GRB's detected by BeppoSAX and gravitational wave detectors EXPLORER and NAUTILUS
Data obtained during five months of 2001 with the gravitational wave (GW)
detectors EXPLORER and NAUTILUS were studied in correlation with the gamma ray
burst data (GRB) obtained with the BeppoSAX satellite. During this period
BeppoSAX was the only GRB satellite in operation, while EXPLORER and NAUTILUS
were the only GW detectors in operation.
No correlation between the GW data and the GRB bursts was found. The
analysis, performed over 47 GRB's, excludes the presence of signals of
amplitude h >=1.2 * 10^{-18}, with 95 % probability, if we allow a time delay
between GW bursts and GRB within +-400 s, and h >= 6.5 * 10^{-19}, if the time
delay is within +- 5 s. The result is also provided in form of scaled
likelihood for unbiased interpretation and easier use for further analysis.Comment: 14 pages, 7 figures. Latex file, compiled with cernik.cls (provided
in the package
Do OB runaway stars have pulsar companions?
We have conducted a VLA search for radio pulsars at the positions of 44 nearby OB runaway stars. The observations involved both searching images for point sources of continuum emission and a time series analysis. Our mean flux sensitivity at 1.4 GHz to pulsars slower than 50 ms was 0.2 mJy. No new pulsars were found in the survey. The size of the survey, combined with the high sensitivity of the observations, sets a significant constraint on the probability, fp, of a runaway OB star having an observable pulsar companion. We find fp≤6.5% with 95% confidence, if the general pulsar luminosity function is applicable to OB star pulsar companions. If a pulsar beaming fraction of 1/3 is assumed, then we estimate that fewer than 20% of runaway OB stars have neutron star companions, unless pulsed radio emission is frequently obscured by the OB stellar wind. Our result is consistent with the dynamical (or cluster) ejection model for the formation of OB runaways. The supernova ejection model is not ruled out, but is constrained by these observations to allow only a small binary survival fraction, which may be accommodated if neutron stars acquire significant natal kicks. According to Leonard, Hills and Dewey (1994), a 20% survival fraction corresponds to a 3-d kick velocity of 420 km s-1. This limit supports recent revisions of the pulsar velocity distribution
- …
