80 research outputs found

    Two Nuclear Localization Signals in USP1 Mediate Nuclear Import of the USP1/UAF1 Complex

    Get PDF
    The human deubiquitinase USP1 plays important roles in cancer-related processes, such as the DNA damage response, and the maintenance of the undifferentiated state of osteosarcoma cells. USP1 deubiquitinase activity is critically regulated by its interaction with the WD40 repeat-containing protein UAF1. Inhibiting the function of the USP1/UAF1 complex sensitizes cancer cells to chemotherapy, suggesting that this complex is a relevant anticancer target. Intriguingly, whereas UAF1 has been reported to locate in the cytoplasm, USP1 is a nuclear protein, although the sequence motifs that mediate its nuclear import have not been functionally characterized. Here, we identify two nuclear localization signals (NLSs) in USP1 and show that these NLSs mediate the nuclear import of the USP1/UAF1 complex. Using a cellular relocation assay based on these results, we map the UAF1-binding site to a highly conserved 100 amino acid motif in USP1. Our data support a model in which USP1 and UAF1 form a complex in the cytoplasm that subsequently translocates to the nucleus through import mediated by USP1 NLSs. Importantly, our findings have practical implications for the development of USP1-directed therapies. First, the UAF1-interacting region of USP1 identified here might be targeted to disrupt the USP1/UAF1 interaction with therapeutic purposes. On the other hand, we describe a cellular relocation assay that can be easily implemented in a high throughput setting to search for drugs that may dissociate the USP1/UAF1 complex

    Genotyping of Streptococcus agalactiae (group B streptococci) isolated from vaginal and rectal swabs of women at 35-37 weeks of pregnancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Group B streptococci (GBS), or <it>Streptococcus agalactiae</it>, are the leading bacterial cause of meningitis and bacterial sepsis in newborns. Here we compared different culture media for GBS detection and we compared the occurrence of different genotypes and serotypes of GBS isolates from the vagina and rectum.</p> <p>Methods</p> <p><it>Streptococcus agalactiae </it>was cultured separately from both rectum and vagina, for a total of 150 pregnant women, i) directly onto Columbia CNA agar, or indirectly onto ii) Granada agar resp. iii) Columbia CNA agar, after overnight incubation in Lim broth.</p> <p>Results</p> <p>Thirty six women (24%) were colonized by GBS. Of these, 19 harbored GBS in both rectum and vagina, 9 only in the vagina and 8 exclusively in the rectum. The combination of Lim broth and subculture on Granada agar was the only culture method that detected all GBS positive women. Using RAPD-analysis, a total of 66 genotypes could be established among the 118 isolates from 32 women for which fingerprinting was carried out. Up to 4 different genotypes in total (rectal + vaginal) were found for 4 women, one woman carried 3 different genotypes vaginally and 14 women carried two 2 different genotypes vaginally. Only two subjects were found to carry strains with the same genotype, although the serotype of both of these strains was different.</p> <p>Eighteen of the 19 subjects with GBS at both sites had at least one vaginal and one rectal isolate with the same genotype.</p> <p>We report the presence of two to four different genotypes in 22 (61%) of the 36 GBS positive women and the presence of identical genotypes in both sites for all women but one.</p> <p>Conclusion</p> <p>The combination of Lim broth and subculture on Granada medium provide high sensitivity for GBS detection from vaginal and rectal swabs from pregnant women. We established a higher genotypic diversity per individual than other studies, with up to four different genotypes among a maximum of 6 isolates per individual picked. Still, 18 of the 19 women with GBS from both rectum and vagina had at least one isolate from each sampling site with the same genotype.</p

    Rhizobium Promotes Non-Legumes Growth and Quality in Several Production Steps: Towards a Biofertilization of Edible Raw Vegetables Healthy for Humans

    Get PDF
    The biofertilization of crops with plant-growth-promoting microorganisms is currently considered as a healthy alternative to chemical fertilization. However, only microorganisms safe for humans can be used as biofertilizers, particularly in vegetables that are raw consumed, in order to avoid sanitary problems derived from the presence of pathogenic bacteria in the final products. In the present work we showed that Rhizobium strains colonize the roots of tomato and pepper plants promoting their growth in different production stages increasing yield and quality of seedlings and fruits. Our results confirmed those obtained in cereals and alimentary oil producing plants extending the number of non-legumes susceptible to be biofertilized with rhizobia to those whose fruits are raw consumed. This is a relevant conclusion since safety of rhizobia for human health has been demonstrated after several decades of legume inoculation ensuring that they are optimal bacteria for biofertilization

    Differential Ligand Binding to a Human Cytomegalovirus Chemokine Receptor Determines Cell Type–Specific Motility

    Get PDF
    While most chemokine receptors fail to cross the chemokine class boundary with respect to the ligands that they bind, the human cytomegalovirus (HCMV)-encoded chemokine receptor US28 binds multiple CC-chemokines and the CX3C-chemokine Fractalkine. US28 binding to CC-chemokines is both necessary and sufficient to induce vascular smooth muscle cell (SMC) migration in response to HCMV infection. However, the function of Fractalkine binding to US28 is unknown. In this report, we demonstrate that Fractalkine binding to US28 not only induces migration of macrophages but also acts to inhibit RANTES-mediated SMC migration. Similarly, RANTES inhibits Fractalkine-mediated US28 migration in macrophages. While US28 binding of both RANTES and Fractalkine activate FAK and ERK-1/2, RANTES signals through Gα12 and Fractalkine through Gαq. These findings represent the first example of differential chemotactic signaling via a multiple chemokine family binding receptor that results in migration of two different cell types. Additionally, the demonstration that US28-mediated chemotaxis is both ligand-specific and cell type–specific has important implications in the role of US28 in HCMV pathogenesis
    corecore