1,655 research outputs found
Non-Parametric Analysis of ENSO Impacts on Yield Distributions: Implications for GRP Contract Design
The paper reports preliminary results of non-parametric analysis of historical and crop model generated peanut yield series in the Southwest Georgia. The results suggest ENSO phase dependent differences in yield distributions that are similar for both the simulated and actual series. The differences are magnified in GRP insurance premiums.Crop Production/Industries,
CMBPol Mission Concept Study: Prospects for polarized foreground removal
In this report we discuss the impact of polarized foregrounds on a future
CMBPol satellite mission. We review our current knowledge of Galactic polarized
emission at microwave frequencies, including synchrotron and thermal dust
emission. We use existing data and our understanding of the physical behavior
of the sources of foreground emission to generate sky templates, and start to
assess how well primordial gravitational wave signals can be separated from
foreground contaminants for a CMBPol mission. At the estimated foreground
minimum of ~100 GHz, the polarized foregrounds are expected to be lower than a
primordial polarization signal with tensor-to-scalar ratio r=0.01, in a small
patch (~1%) of the sky known to have low Galactic emission. Over 75% of the sky
we expect the foreground amplitude to exceed the primordial signal by about a
factor of eight at the foreground minimum and on scales of two degrees. Only on
the largest scales does the polarized foreground amplitude exceed the
primordial signal by a larger factor of about 20. The prospects for detecting
an r=0.01 signal including degree-scale measurements appear promising, with 5
sigma_r ~0.003 forecast from multiple methods. A mission that observes a range
of scales offers better prospects from the foregrounds perspective than one
targeting only the lowest few multipoles. We begin to explore how optimizing
the composition of frequency channels in the focal plane can maximize our
ability to perform component separation, with a range of typically 40 < nu <
300 GHz preferred for ten channels. Foreground cleaning methods are already in
place to tackle a CMBPol mission data set, and further investigation of the
optimization and detectability of the primordial signal will be useful for
mission design.Comment: 42 pages, 14 figures, Foreground Removal Working Group contribution
to the CMBPol Mission Concept Study, v2, matches AIP versio
Small-Angle CMB Temperature Anisotropies Induced by Cosmic Strings
We use Nambu-Goto numerical simulations to compute the cosmic microwave
background (CMB) temperature anisotropies induced at arcminute angular scales
by a network of cosmic strings in a Friedmann-Lemaitre-Robertson-Walker (FLRW)
expanding universe. We generate 84 statistically independent maps on a 7.2
degree field of view, which we use to derive basic statistical estimators such
as the one-point distribution and two-point correlation functions. At high
multipoles, the mean angular power spectrum of string-induced CMB temperature
anisotropies can be described by a power law slowly decaying as \ell^{-p}, with
p=0.889 (+0.001,-0.090) (including only systematic errors). Such a behavior
suggests that a nonvanishing string contribution to the overall CMB
anisotropies may become the dominant source of fluctuations at small angular
scales. We therefore discuss how well the temperature gradient magnitude
operator can trace strings in the context of a typical arcminute
diffraction-limited experiment. Including both the thermal and nonlinear
kinetic Sunyaev-Zel'dovich effects, the Ostriker-Vishniac effect, and the
currently favored adiabatic primary anisotropies, we find that, on such a map,
strings should be ``eye visible,'' with at least of order ten distinctive
string features observable on a 7.2 degree gradient map, for tensions U down to
GU \simeq 2 x 10^{-7} (in Planck units). This suggests that, with upcoming
experiments such as the Atacama Cosmology Telescope (ACT), optimal
non-Gaussian, string-devoted statistical estimators applied to small-angle CMB
temperature or gradient maps may put stringent constraints on a possible cosmic
string contribution to the CMB anisotropies.Comment: 17 pages, 9 figures. v2: matches published version, minor
clarifications added, typo in Eq. (8) fixed, results unchange
Searching for Signatures of Cosmic Superstrings in the CMB
Because cosmic superstrings generically form junctions and gauge theoretic
strings typically do not, junctions may provide a signature to distinguish
between cosmic superstrings and gauge theoretic cosmic strings. In cosmic
microwave background anisotropy maps, cosmic strings lead to distinctive line
discontinuities. String junctions lead to junctions in these line
discontinuities. In turn, edge detection algorithms such as the Canny algorithm
can be used to search for signatures of strings in anisotropy maps. We apply
the Canny algorithm to simulated maps which contain the effects of cosmic
strings with and without string junctions. The Canny algorithm produces edge
maps. To distinguish between edge maps from string simulations with and without
junctions, we examine the density distribution of edges and pixels crossed by
edges. We find that in string simulations without Gaussian noise (such as
produced by the dominant inflationary fluctuations) our analysis of the output
data from the Canny algorithm can clearly distinguish between simulations with
and without string junctions. In the presence of Gaussian noise at the level
expected from the current bounds on the contribution of cosmic strings to the
total power spectrum of density fluctuations, the distinction between models
with and without junctions is more difficult. However, by carefully analyzing
the data the models can still be differentiated.Comment: 15 page
CMBPol Mission Concept Study: Foreground Science Knowledge and Prospects
We report on our knowledge of Galactic foregrounds, as well as on how a CMB
satellite mission aiming at detecting a primordial B-mode signal (CMBPol) will
contribute to improving it. We review the observational and analysis techniques
used to constrain the structure of the Galactic magnetic field, whose presence
is responsible for the polarization of Galactic emissions. Although our current
understanding of the magnetized interstellar medium is somewhat limited,
dramatic improvements in our knowledge of its properties are expected by the
time CMBPol flies. Thanks to high resolution and high sensitivity instruments
observing the whole sky at frequencies between 30 GHz and 850 GHz, CMBPol will
not only improve this picture by observing the synchrotron emission from our
galaxy, but also help constrain dust models. Polarized emission from
interstellar dust indeed dominates over any other signal in CMBPol's highest
frequency channels. Observations at these wavelengths, combined with
ground-based studies of starlight polarization, will therefore enable us to
improve our understanding of dust properties and of the mechanism(s)
responsible for the alignment of dust grains with the Galactic magnetic field.
CMBPol will also shed new light on observations that are presently not well
understood. Morphological studies of anomalous dust and synchrotron emissions
will indeed constrain their natures and properties, while searching for
fluctuations in the emission from heliospheric dust will test our understanding
of the circumheliospheric interstellar medium. Finally, acquiring more
information on the properties of extra-Galactic sources will be necessary in
order to maximize the cosmological constraints extracted from CMBPol's
observations of CMB lensing. (abridged)Comment: 43 pages, 7 figures, 2 table
The 21 cm Signature of Shock Heated and Diffuse Cosmic String Wakes
The analysis of the 21 cm signature of cosmic string wakes is extended in
several ways. First we consider the constraints on from the absorption
signal of shock heated wakes laid down much later than matter radiation
equality. Secondly we analyze the signal of diffuse wake, that is those wakes
in which there is a baryon overdensity but which have not shock heated. Finally
we compare the size of these signals compared to the expected thermal noise per
pixel which dominates over the background cosmic gas brightness temperature and
find that the cosmic string signal will exceed the thermal noise of an
individual pixel in the Square Kilometre Array for string tensions .Comment: 10 pages, 4 figures, Appendix added, version published in JCA
Cosmic strings and Natural Inflation
In the present work we discuss cosmic strings in natural inflation. Our
analysis is based entirely on the CMB quadrupole temperature anisotropy and on
the existing upper bound on the cosmic string tension. Our results show that
the allowed range for both parameters of the inflationary model is very
different from the range obtained recently if cosmic strings are formed at the
same time with inflation, while if strings are formed after inflation we find
that the parameters of the inflationary model are similar to the ones obtained
recently.Comment: 12 pages, 0 tables, 4 figures, accepted for publication in JHE
- …
