139 research outputs found
1H, 13C and 15N assignment of self-complemented MrkA protein antigen from Klebsiella pneumoniae
Molecular basis of the Multiple Mitochondrial Dysfunctions Syndrome 2: the pathogenic His96Arg BOLA3 mutation
Molecular evidence of polyphyletism in the plant genus Carum L. (Apiaceae)
An analysis of internal transcribed spacer (ITS) DNA sequences of the four species of Carum L. (Apiaceae) known in Italy revealed that this genus is polyphyletic. Maximum parsimony with bootstrap resampling, maximum likelihood and Bayesian inference analyses resulted in three distinct clades: Carum carvi L. clustered within tribe Careae Baill. (former Aegopodium clade); Hellenocarum multiflorum (= Carum multiflorum), Carum heldreichii and Carum appuanum clustered within the tribe Pyramidoptereae Boiss.; and H. multiflorum and C. heldreichii formed a well supported clade. Since the sister group of H. multiflorum and C. heldreichii was Bunium elegans the autonomy of Hellenocarum from Carum is confirmed by our study. We also found that C. appuanum clustered separately from the other Carum species, with the closest related species appearing to be Scaligeria moreana but this still had few morphological similarities with C. appuanum
The Intriguing mitoNEET: Functional and Spectroscopic Properties of a Unique [2Fe-2S] Cluster Coordination Geometry
Despite the number of cellular and pathological mitoNEET-related processes, very few details are known about the mechanism of action of the protein. The recently discovered existence of a link between NEET proteins and cancer pave the way to consider mitoNEET and its Fe-S clusters as suitable targets to inhibit cancer cell proliferation. Here, we will review the variety of spectroscopic techniques that have been applied to study mitoNEET in an attempt to explain the drastic difference in clusters stability and reactivity observed for the two redox states, and to elucidate the cellular function of the protein. In particular, the extensive NMR assignment and the characterization of first coordination sphere provide a molecular fingerprint helpful to assist the design of drugs able to impair cellular processes or to directly participate in redox reactions or protein–protein recognition mechanisms
2D NMR Analysis as a Sensitive Tool for Evaluating the Higher-Order Structural Integrity of Monoclonal Antibody against COVID-19
Methylglyoxal interaction with superoxide dismutase 1
Methylglyoxal (MG) is a highly reactive aldehyde spontaneously formed in human cells mainly as a by-product of glycolysis. Such endogenous metabolite reacts with proteins, nucleotides and lipids forming advanced glycation end-products (AGEs). MG binds to arginine, lysine and cysteine residues of proteins causing the formation of stable adducts that can interfere with protein function. Among the proteins affected by glycation, MG has been found to react with superoxide dismutase 1 (SOD1), a fundamental anti-oxidant enzyme that is abundantly expressed in neurons. Considering the high neuronal susceptibility to MG-induced oxidative stress, we sought to investigate by mass spectrometry and NMR spectroscopy which are the structural modifications induced on SOD1 by the reaction with MG. We show that MG reacts preferentially with the disulfide-reduced, demetallated form of SOD1, gradually causing its unfolding, and to a lesser extent, with the intermediate state of maturation – the reduced, zinc-bound homodimer – causing its gradual monomerization. These results suggest that MG could impair the correct maturation of SOD1 in vivo, thus both increasing cellular oxidative stress and promoting the cytotoxic misfolding and aggregation process of SOD1
Paramagnetic 1H NMR Spectroscopy to Investigate the Catalytic Mechanism of Radical S-Adenosylmethionine Enzymes
Defects in the maturation of mitochondrial iron–sulfur proteins: biophysical investigation of the MMDS3 causing Gly104Cys variant of IBA57
Multiple mitochondrial dysfunctions syndrome type 3 (MMDS3) is a rare autosomal recessive mitochondrial leukoencephalopathy caused by biallelic pathogenic variants in the IBA57 gene. The gene protein product, IBA57, has an unknown role in iron–sulfur (Fe-S) cluster biogenesis but is required for the maturation of mitochondrial [4Fe-4S] proteins. To better understand the role of IBA57 in MMDS3, we have investigated the impact of the pathogenic p.Gly104Cys (c.310G > T) variant on the structural and functional properties of IBA57. The Gly104Cys variant has been associated with a severe MMDS3 phenotype in both compound heterozygous and homozygous states, and defects in the activity of mitochondrial respiratory complexes and lipoic acid-dependent enzymes have been demonstrated in the affected patients. Size exclusion chromatography, also coupled to multiple angle light scattering, NMR, circular dichroism, and fluorescence spectroscopy characterization has shown that the Gly104Cys variant does not impair the conversion of the homo-dimeric [2Fe-2S]–ISCA22 complex into the hetero-dimeric IBA57–[2Fe-2S]–ISCA2 but significantly affects the stability of IBA57, in both its isolated form and in complex with ISCA2, thus providing a rationale for the severe MMDS3 phenotype associated with this variant
Unraveling the mechanism of [4Fe-4S] cluster assembly on the N-terminal cluster binding site of NUBP1
- …
