73 research outputs found

    Determination of complex subclonal structures of hematological malignancies by multiplexed genotyping of blood progenitor colonies.

    Get PDF
    Current next-generation sequencing (NGS) technologies allow unprecedented insights into the mutational profiles of tumors. Recent studies in myeloproliferative neoplasms have further demonstrated that, not only the mutational profile, but also the order in which these mutations are acquired is relevant for our understanding of the disease. Our ability to assign mutation order from NGS data alone is, however, limited. Here, we present a strategy of highly multiplexed genotyping of burst forming unit-erythroid colonies based on NGS results to assess subclonal tumor structure. This allowed for the generation of complex clonal hierarchies and determination of order of mutation acquisition far more accurately than was possible from NGS data alone.Work in ARG lab has been supported by the Leukemia and Lymphoma Society (grant 7001-12), the National Institute of Health Research (grant NF-SI-0512-10079) and core support grants by the MRC and Wellcome Trust to the Cambridge Institute for Medical Research (100140/Z/12/Z) and Wellcome Trust-MRC Cambridge Stem Cell Institute (097922/Z/11/Z). Work in ARG's laboratory has in addition been supported by Cancer Research UK (grants C1163/A12765 and C1163/A21762), Bloodwise (grant 13003) and the Wellcome Trust (grant 104710/Z/14/Z

    COVID-19 vaccine-induced antibody and T cell responses in immunosuppressed patients with inflammatory bowel disease after the third vaccine dose

    Get PDF
    Background: COVID-19 vaccine-induced antibody responses are reduced in patients with inflammatory bowel disease (IBD) taking infliximab or tofacitinib after two vaccine doses. We sought to determine whether immunosuppressive treatments were associated with reduced antibody and T cell responses after a third vaccine dose. Methods: 352 adults (72 healthy controls and 280 IBD) from the prospectively recruited study cohort were sampled 28-49 days after a third dose of SARS-CoV-2 vaccine. IBD medications studied included thiopurines (n=65), infliximab (n=46), thiopurine/infliximab combination therapy (n=49), ustekinumab (n=44), vedolizumab (n=50) or tofacitinib (n=26). SARS-CoV-2 spike antibody binding and T cell responses were measured. Findings: Geometric mean [geometric SD] anti-S1 RBD antibody concentrations increased in all study groups following a third dose of vaccine, but were significantly lower in patients treated with infliximab (2736.8 U/mL [4.3]; P<0.0001), infliximab and thiopurine combination (1818.3 U/mL [6.7]; P<0.0001) and tofacitinib (8071.5 U/mL [3.1]; P=0.0018) compared to controls (16774.2 U/ml [2.6]). There were no significant differences in anti-S1 RBD antibody concentrations between control subjects and thiopurine (12019.7 U/mL [2.2]; P=0.099), ustekinumab (11089.3 U/mL [2.8]; P=0.060), nor vedolizumab treated patients (13564.9 U/mL [2.4]; P=0.27). In multivariable modelling, lower anti-S1 RBD antibody concentrations were independently associated with infliximab (Geometric mean ratio 0.15, 95% CI 0.11-0.21, P<0.0001), tofacitinib (0.52, 95% CI 0.31-0.87, P=0.012) and thiopurine (0.69, 95% CI 0.51-0.95, P=0.021), but not with ustekinumab (0.64, 95% CI 0.39-1.06, P=0.083), or vedolizumab (0.84, 95% CI 0.54-1.30, P=0.43). Previous SARS-CoV-2 infection (1.58, 95% CI 1.22-2.05, P=0.00056) and older age (0.88, 95% CI 0.80-0.97, P=0.0073) were independently associated with higher and lower anti-S1 antibody concentrations respectively. However, antigen specific T cell responses were similar in IBD patients in all treatment groups studied, except for recipients of tofacitinib without evidence of previous infection, where T cell responses were significantly reduced relative to healthy controls (p=0.021). Interpretation: A third dose of COVID-19 vaccine induced a boost in antibody binding in immunosuppressed patients with IBD, but these responses were reduced in patients taking infliximab, infliximab/thiopurine combination and tofacitinib therapy. Tofacitinib was also associated with reduced T cell responses. These findings support continued prioritisation of immunosuppressed groups for further booster dosing, particularly those on Janus Kinase (JAK) inhibitors who have attenuation of both serological and cell-mediated vaccine-induced immunity. Funding: Financial support was provided as a Research Grant by Pfizer Ltd

    Antibody responses to Influenza vaccination are diminished in patients with inflammatory bowel disease on infliximab or tofacitinib

    Get PDF
    Background and Aims: We sought to determine whether six commonly used immunosuppressive regimens were associated with lower antibody responses after seasonal influenza vaccination in patients with inflammatory bowel disease [IBD]. Methods: We conducted a prospective study including 213 IBD patients and 53 healthy controls: 165 who had received seasonal influenza vaccine and 101 who had not. IBD medications included infliximab, thiopurines, infliximab and thiopurine combination therapy, ustekinumab, vedolizumab, or tofacitinib. The primary outcome was antibody responses against influenza/A H3N2 and A/H1N1, compared to controls, adjusting for age, prior vaccination, and interval between vaccination and sampling. Results: Lower antibody responses against influenza A/H3N2 were observed in patients on infliximab (geometric mean ratio 0.35 [95% confidence interval 0.20–0.60], p = 0.0002), combination of infliximab and thiopurine therapy (0.46 [0.27–0.79], p = 0.0050), and tofacitinib (0.28 [0.14–0.57], p = 0.0005) compared to controls. Lower antibody responses against A/H1N1 were observed in patients on infliximab (0.29 [0.15–0.56], p = 0.0003), combination of infliximab and thiopurine therapy (0.34 [0.17–0.66], p = 0.0016), thiopurine monotherapy (0.46 [0.24–0.87], p = 0.017), and tofacitinib (0.23 [0.10–0.56], p = 0.0013). Ustekinumab and vedolizumab were not associated with reduced antibody responses against A/H3N2 or A/H1N1. Vaccination in the previous year was associated with higher antibody responses to A/H3N2. Vaccine-induced anti-SARS-CoV-2 antibody concentration weakly correlated with antibodies against H3N2 [r = 0.27; p = 0.0004] and H1N1 [r = 0.33; p < 0.0001]. Conclusions: Vaccination in both the 2020–2021 and 2021–2022 seasons was associated with significantly higher antibody responses to influenza/A than no vaccination or vaccination in 2021–2022 alone. Infliximab and tofacitinib are associated with lower binding antibody responses to influenza/A, similar to COVID-19 vaccine-induced antibody responses

    COVID-19 vaccine-induced antibody responses in immunosuppressed patients with inflammatory bowel disease (VIP): a multicentre, prospective, case-control study.

    Get PDF
    BACKGROUND: The effects that therapies for inflammatory bowel disease (IBD) have on immune responses to SARS-CoV-2 vaccination are not yet fully known. Therefore, we sought to determine whether COVID-19 vaccine-induced antibody responses were altered in patients with IBD on commonly used immunosuppressive drugs. METHODS: In this multicentre, prospective, case-control study (VIP), we recruited adults with IBD treated with one of six different immunosuppressive treatment regimens (thiopurines, infliximab, a thiopurine plus infliximab, ustekinumab, vedolizumab, or tofacitinib) and healthy control participants from nine centres in the UK. Eligible participants were aged 18 years or older and had received two doses of COVID-19 vaccines (either ChAdOx1 nCoV-19 [Oxford-AstraZeneca], BNT162b2 [Pfizer-BioNTech], or mRNA1273 [Moderna]) 6-12 weeks apart (according to scheduling adopted in the UK). We measured antibody responses 53-92 days after a second vaccine dose using the Roche Elecsys Anti-SARS-CoV-2 spike electrochemiluminescence immunoassay. The primary outcome was anti-SARS-CoV-2 spike protein antibody concentrations in participants without previous SARS-CoV-2 infection, adjusted by age and vaccine type, and was analysed by use of multivariable linear regression models. This study is registered in the ISRCTN Registry, ISRCTN13495664, and is ongoing. FINDINGS: Between May 31 and Nov 24, 2021, we recruited 483 participants, including patients with IBD being treated with thiopurines (n=78), infliximab (n=63), a thiopurine plus infliximab (n=72), ustekinumab (n=57), vedolizumab (n=62), or tofacitinib (n=30), and 121 healthy controls. We included 370 participants without evidence of previous infection in our primary analysis. Geometric mean anti-SARS-CoV-2 spike protein antibody concentrations were significantly lower in patients treated with infliximab (156·8 U/mL [geometric SD 5·7]; p<0·0001), infliximab plus thiopurine (111·1 U/mL [5·7]; p<0·0001), or tofacitinib (429·5 U/mL [3·1]; p=0·0012) compared with controls (1578·3 U/mL [3·7]). There were no significant differences in antibody concentrations between patients treated with thiopurine monotherapy (1019·8 U/mL [4·3]; p=0·74), ustekinumab (582·4 U/mL [4·6]; p=0·11), or vedolizumab (954·0 U/mL [4·1]; p=0·50) and healthy controls. In multivariable modelling, lower anti-SARS-CoV-2 spike protein antibody concentrations were independently associated with infliximab (geometric mean ratio 0·12, 95% CI 0·08-0·17; p<0·0001) and tofacitinib (0·43, 0·23-0·81; p=0·0095), but not with ustekinumab (0·69, 0·41-1·19; p=0·18), thiopurines (0·89, 0·64-1·24; p=0·50), or vedolizumab (1·16, 0·74-1·83; p=0·51). mRNA vaccines (3·68, 2·80-4·84; p<0·0001; vs adenovirus vector vaccines) were independently associated with higher antibody concentrations and older age per decade (0·79, 0·72-0·87; p<0·0001) with lower antibody concentrations. INTERPRETATION: For patients with IBD, the immunogenicity of COVID-19 vaccines varies according to immunosuppressive drug exposure, and is attenuated in recipients of infliximab, infliximab plus thiopurines, and tofacitinib. Scheduling of third primary, or booster, doses could be personalised on the basis of an individual's treatment, and patients taking anti-tumour necrosis factor and tofacitinib should be prioritised. FUNDING: Pfizer

    Combined point of care nucleic acid and antibody testing for SARS-CoV-2 following emergence of D614G Spike Variant

    Get PDF
    Rapid COVID-19 diagnosis in hospital is essential, though complicated by 30-50% of nose/throat swabs being negative by SARS-CoV-2 nucleic acid amplification testing (NAAT). Furthermore, the D614G spike mutant now dominates the pandemic and it is unclear how serological tests designed to detect anti-Spike antibodies perform against this variant. We assess the diagnostic accuracy of combined rapid antibody point of care (POC) and nucleic acid assays for suspected COVID-19 disease due to either wild type or the D614G spike mutant SARS-CoV-2. The overall detection rate for COVID-19 is 79.2% (95CI 57.8-92.9%) by rapid NAAT alone. Combined point of care antibody test and rapid NAAT is not impacted by D614G and results in very high sensitivity for COVID-19 diagnosis with very high specificity

    Distinction of early complement classical and lectin pathway activation via quantification of C1s/C1-INH and MASP-1/C1-INH complexes using novel ELISAs

    Get PDF
    The most commonly used markers to assess complement activation are split products that are produced through activation of all three pathways and are located downstream of C3. In contrast, C4d derives from the cleavage of C4 and indicates either classical (CP) or lectin pathway (LP) activation. Although C4d is perfectly able to distinguish between CP/LP and alternative pathway (AP) activation, no well-established markers are available to differentiate between early CP and LP activation. Active enzymes of both pathways (C1s/C1r for the CP, MASP-1/MASP-2 for the LP) are regulated by C1 esterase inhibitor (C1-INH) through the formation of covalent complexes. Aim of this study was to develop validated immunoassays detecting C1s/C1-INH and MASP-1/C1-INH complex levels. Measurement of the complexes reveals information about the involvement of the respective pathways in complement-mediated diseases. Two sandwich ELISAs detecting C1s/C1-INH and MASP-1/C1-INH complex were developed and tested thoroughly, and it was investigated whether C1s/C1-INH and MASP-1/C1-INH complexes could serve as markers for either early CP or LP activation. In addition, a reference range for these complexes in healthy adults was defined, and the assays were clinically validated utilizing samples of 414 COVID-19 patients and 96 healthy controls. The immunoassays can reliably measure C1s/C1-INH and MASP-1/C1-INH complex concentrations in EDTA plasma from healthy and diseased individuals. Both complex levels are increased in serum when activated with zymosan, making them suitable markers for early classical and early lectin pathway activation. Furthermore, measurements of C1-INH complexes in 96 healthy adults showed normally distributed C1s/C1-INH complex levels with a physiological concentration of 1846 ± 1060 ng/mL (mean ± 2SD) and right-skewed distribution of MASP-1/C1-INH complex levels with a median concentration of 36.9 (13.18 - 87.89) ng/mL (2.5-97.5 percentile range), while levels of both complexes were increased in COVID-19 patients (p&lt;0.0001). The newly developed assays measure C1-INH complex levels in an accurate way. C1s/C1-INH and MASP-1/C1-INH complexes are suitable markers to assess early classical and lectin pathway activation. An initial reference range was set and first studies showed that these markers have added value for investigating and unraveling complement activation in human disease

    Complement lectin pathway activation is associated with COVID-19 disease severity, independent of MBL2 genotype subgroups

    Get PDF
    IntroductionWhile complement is a contributor to disease severity in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, all three complement pathways might be activated by the virus. Lectin pathway activation occurs through different pattern recognition molecules, including mannan binding lectin (MBL), a protein shown to interact with SARS-CoV-2 proteins. However, the exact role of lectin pathway activation and its key pattern recognition molecule MBL in COVID-19 is still not fully understood.MethodsWe therefore investigated activation of the lectin pathway in two independent cohorts of SARS-CoV-2 infected patients, while also analysing MBL protein levels and potential effects of the six major single nucleotide polymorphisms (SNPs) found in the MBL2 gene on COVID-19 severity and outcome.ResultsWe show that the lectin pathway is activated in acute COVID-19, indicated by the correlation between complement activation product levels of the MASP-1/C1-INH complex (p=0.0011) and C4d (p&lt;0.0001) and COVID-19 severity. Despite this, genetic variations in MBL2 are not associated with susceptibility to SARS-CoV-2 infection or disease outcomes such as mortality and the development of Long COVID.ConclusionIn conclusion, activation of the MBL-LP only plays a minor role in COVID-19 pathogenesis, since no clinically meaningful, consistent associations with disease outcomes were noted
    corecore