18 research outputs found

    CK2 modulates adipocyte insulin-signaling and is up-regulated in human obesity

    Get PDF
    Insulin plays a major role in glucose metabolism and insulin-signaling defects are present in obesity and diabetes. CK2 is a pleiotropic protein kinase implicated in fundamental cellular pathways and abnormally elevated in tumors. Here we report that in human and murine adipocytes CK2-inhibition decreases the insulin-induced glucose-uptake by counteracting Akt-signaling and GLUT4-translocation to the plasma membrane. In mice CK2 acts on insulin-signaling in adipose tissue, liver and skeletal muscle and its acute inhibition impairs glucose tolerance. Notably, CK2 protein-level and activity are greatly up-regulated in white adipose tissue from ob/ob and db/db mice as well as from obese patients, regardless the severity of their insulin-resistance and the presence of pre-diabetes or overt type 2 diabetes. Weight loss obtained by both bariatric surgery or hypocaloric diet reverts CK2 hyper-activation to normal level. Our data suggest a central role of CK2 in insulin-sensitivity, glucose homeostasis and adipose tissue remodeling. CK2 up-regulation is identified as a hallmark of adipose tissue pathological expansion, suggesting a new potential therapeutic target for human obesity

    SCCA-IgM as a Potential Biomarker of Non-Alcoholic Fatty Liver Disease in Patients with Obesity, Prediabetes and Diabetes Undergoing Sleeve Gastrectomy

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) has a high prevalence in obesity and its presence should be screened. Laparoscopic sleeve gastrectomy (LSG) is an effective treatment for obesity, but its effects on NAFLD are still to be firmly established. The diagnosis of non-alcoholic steatohepatitis (NASH) is currently performed by liver biopsy, a costly and invasive procedure. Squamous cell carcinoma antigen-IgM (SCCA-IgM) is a biomarker of viral hepatitis to hepatocellular carcinoma development and its role in NAFLD to NASH progression has not yet been investigated. Objective: The aim of this study was to evaluate SCCA-IgM as a non-invasive biomarker of NAFLD/NASH in patients with different degrees of metabolic-complicated obesity before and after LSG. Method: Fifty-six patients with obesity were studied before and 12 months after LSG; anthropometric, biochemical, clinical, and imaging data were collected. Results: At baseline steatosis was strongly associated with the glycaemic profile (p = 0.016) and was already present in prediabetic patients with obesity (82%). Only 3 patients had an SCCA-IgM level above the normal cut-off. SCCA-IgM titre did not change according to glycaemic profile or steatosis. Metabolic and inflammatory factors and transaminases significantly reduced after LSG-induced weight loss, except for SCCA-IgM. The ALT/AST ratio decreased post-LSG correlated with BMI (r = 0.297, p = 0.031), insulin (r = 0.354, p = 0.014), and triglycerides (r = 0.355, p = 0.009) reduction. Conclusions: Our results confirm the tight link between NAFLD and metabolic complications, suggesting prediabetes as a new risk factor of steatosis. SCCA-IgM does not seem to have a role in the identification and prognosis of NAFLD

    SCCA-IgM as a Potential Biomarker of Non-Alcoholic Fatty Liver Disease in Patients with Obesity, Prediabetes and Diabetes Undergoing Sleeve Gastrectomy

    No full text
    &lt;b&gt;&lt;i&gt;Background:&lt;/i&gt;&lt;/b&gt; Non-alcoholic fatty liver disease (NAFLD) has a high prevalence in obesity and its presence should be screened. Laparoscopic sleeve gastrectomy (LSG) is an effective treatment for obesity, but its effects on NAFLD are still to be firmly established. The diagnosis of non-alcoholic steatohepatitis (NASH) is currently performed by liver biopsy, a costly and invasive procedure. Squamous cell carcinoma antigen-IgM (SCCA-IgM) is a biomarker of viral hepatitis to hepatocellular carcinoma development and its role in NAFLD to NASH progression has not yet been investigated. &lt;b&gt;&lt;i&gt;Objective:&lt;/i&gt;&lt;/b&gt; The aim of this study was to evaluate SCCA-IgM as a non-invasive biomarker of NAFLD/NASH in patients with different degrees of metabolic-complicated obesity before and after LSG. &lt;b&gt;&lt;i&gt;Method:&lt;/i&gt;&lt;/b&gt; Fifty-six patients with obesity were studied before and 12 months after LSG; anthropometric, biochemical, clinical, and imaging data were collected. &lt;b&gt;&lt;i&gt;Results:&lt;/i&gt;&lt;/b&gt; At baseline steatosis was strongly associated with the glycaemic profile (&lt;i&gt;p&lt;/i&gt; = 0.016) and was already present in prediabetic patients with obesity (82%). Only 3 patients had an SCCA-IgM level above the normal cut-off. SCCA-IgM titre did not change according to glycaemic profile or steatosis. Metabolic and inflammatory factors and transaminases significantly reduced after LSG-induced weight loss, except for SCCA-IgM. The ALT/AST ratio decreased post-LSG correlated with BMI (&lt;i&gt;r&lt;/i&gt; = 0.297, &lt;i&gt;p&lt;/i&gt; = 0.031), insulin (&lt;i&gt;r&lt;/i&gt; = 0.354, &lt;i&gt;p&lt;/i&gt; = 0.014), and triglycerides (&lt;i&gt;r&lt;/i&gt; = 0.355, &lt;i&gt;p&lt;/i&gt; = 0.009) reduction. &lt;b&gt;&lt;i&gt;Conclusions:&lt;/i&gt;&lt;/b&gt; Our results confirm the tight link between NAFLD and metabolic complications, suggesting prediabetes as a new risk factor of steatosis. SCCA-IgM does not seem to have a role in the identification and prognosis of NAFLD.</jats:p

    Characterization of subcutaneous and omental adipose tissue in patients with obesity and with different degrees of glucose impairment

    No full text
    AbstractAlthough obesity represents a risk factor for the development of type 2 diabetes mellitus (T2DM), the link between these pathological conditions is not so clear. The manner in which the different elements of adipose tissue (AT) interplay in order to grow has been suggested to have a role in the genesis of metabolic complications, but this has not yet been fully addressed in humans. Through IHC, transmission electron microscopy, cytometry, and in vitro cultures, we described the morphological and functional changes of subcutaneous and visceral AT (SAT and VAT) in normoglycemic, prediabetic and T2DM patients with obesity compared to lean subjects. In both SAT and VAT we measured a hypertrophic and hyperplastic expansion, causing similar vascular rarefaction in obese patients with different degrees of metabolic complications. Capillaries display dysfunctional basement membrane thickening only in T2DM patients evidencing VAT as a new target of T2DM microangiopathy. The largest increase in adipocyte size and decrease in adipose stem cell number and adipogenic potential occur both in T2DM and in prediabetes. We showed that SAT and VAT remodeling with stemness deficit is associated with early glucose metabolism impairment suggesting the benefit of an AT-target therapy controlling hypertrophy and hyperplasia already in prediabetic obese patients.</jats:p

    Characterization of subcutaneous and omental adipose tissue in patients with obesity and with different degrees of glucose impairment

    No full text
    Abstract Although obesity represents a risk factor for the development of type 2 diabetes mellitus (T2DM), the link between these pathological conditions is not so clear. The manner in which the different elements of adipose tissue (AT) interplay in order to grow has been suggested to have a role in the genesis of metabolic complications, but this has not yet been fully addressed in humans. Through IHC, transmission electron microscopy, cytometry, and in vitro cultures, we described the morphological and functional changes of subcutaneous and visceral AT (SAT and VAT) in normoglycemic, prediabetic and T2DM patients with obesity compared to lean subjects. In both SAT and VAT we measured a hypertrophic and hyperplastic expansion, causing similar vascular rarefaction in obese patients with different degrees of metabolic complications. Capillaries display dysfunctional basement membrane thickening only in T2DM patients evidencing VAT as a new target of T2DM microangiopathy. The largest increase in adipocyte size and decrease in adipose stem cell number and adipogenic potential occur both in T2DM and in prediabetes. We showed that SAT and VAT remodeling with stemness deficit is associated with early glucose metabolism impairment suggesting the benefit of an AT-target therapy controlling hypertrophy and hyperplasia already in prediabetic obese patients
    corecore