19 research outputs found
Effect of biofuel- and lube oil-originated sulfur and phosphorus on the performance of Cu-SSZ-13 and V2O5-WO3/TiO2 SCR catalysts
Two different SCR catalysts, V2O5-WO3/TiO2 and Cu-SSZ-13, were exposed to biodiesel exhausts generated by a diesel burner. The effect of phosphorus and sulfur on the SCR performance of these catalysts was investigated by doping the fuel with P-, S-, or P + S-containing compounds. Elemental analyses showed that both catalysts captured phosphorus while only Cu-SSZ-13 captured sulfur. High molar P/V ratios, up to almost 3, were observed for V2O5-WO3/TiO2, while the highest P/Cu ratios observed were slightly above 1 for the Cu-SSZ-13 catalyst. Although the V2O5-WO3/TiO2 catalyst captured more P than did the Cu-SSZ-13 catalyst, a higher degree of deactivation was observed for the latter, especially at low temperatures. For both catalysts, phosphorus exposure resulted in suppression of the SCR performance over the entire temperature range. Sulfur exposure, on the other hand, resulted in deactivation of the Cu-SSZ-13 catalyst mainly at temperatures below 300-350 \ub0C. The use of an oxidation catalyst upstream of the SCR catalyst during the exhaust-exposure protects the SCR catalyst from phosphorus poisoning by capturing phosphorus. The results in this work will improve the understanding of chemical deactivation of SCR catalysts and aid in developing durable aftertreatment systems
Effect of metal loading on activity, selectivity and deactivation behavior of Pd/silica–alumina catalysts in the hydroconversion of n-hexadecane
Hydroconversion of model Fischer‑Tropsch wax over noble metal/silica-alumina catalysts
Synthetic fuels produced using the Fischer-Tropsch technology will play an important role in the future of the transportation sector. The Fischer-Tropsch synthesis (FTS) allows converting synthesis gas (CO + H2) into fuels of outstanding quality. The synthesis gas can be obtained from different carbon sources: natural gas, coal and biomass. In order to maximize the yield of middle distillates, the process is carried out in two main steps: the FT-synthesis that produces long-chain hydrocarbons (waxes) and a hydrocracking step, to selectively convert the waxes into fuels. Diesel produced by this process is characterized by excellent combustion properties and reduced harmful tailpipe emissions compared to conventional diesel. Due to the growing interest in synthetic fuel production, from the industry and the academia, and to the peculiar characteristics of the Fischer-Tropsch products, research in hydrocracking has received renewed attention. Catalysts for the hydrocracking of long-chain paraffins have been the subject of the present work, which is the summary of four scientific publications. Noble metals supported on acid carriers have been compared, especially for what regards the mechanisms through which hydrocracking proceeds. The catalysts were synthesized and characterized by various techniques, including N2 physisorption, H2 chemisorption, TEM, pyridine adsorption FTIR, ammonia TPD, etc. It was shown that catalytic activity is mainly dependent on the acid support used; that selectivity is strongly dependent on conversion, high conversion favoring highly branched cracking products. Two main reaction routes were observed: bifunctional hydrocracking and hydrogenolytic cracking. Platinum-containing catalysts showed high selectivity towards the latter, while palladium/silica-alumina behaved as pure bifunctional catalysts. Catalyst deactivation was investigated and initial sintering of metal particles was observed. Coking was also a cause of deactivation. Formation of coke deposits was highly dependent on the metal loading of the catalysts. Metal loading also influenced catalyst selectivity, especially in the case of platinum/silica-alumina catalysts. Monofunctional hydrogenolysis on the platinum particles, superimposed to the bifunctional mechanism was observed. This route increased selectivity towards linear hydrocarbons and methane, with increasing amounts of platinum. The specific rate of hydrogenolysis was constant for different loadings of platinum on the same acid silica-alumina support. Using a different, less acid, support negatively affected the hydrogenolytic activity of the platinum catalytic sites. It was concluded that metal-support interactions might play an important role in the catalytic properties of platinum surfaces. This work has contributed to increasing the knowledge about hydrocracking of long-chain alkanes and pointed out some features that might have practical interest in the application of this technology to synthetic-fuel production.Syntetiska drivmedel tillverkade genom Fischer-Tropsch teknologin kommer i framtiden att ha en betydande roll för transportsektorn. Fischer-Tropsch syntesen (FTS) möjliggör omvandling av syntesgas (CO + H2) till högkvalitativa bränslen. Syntesgasen kan erhållas från olika kolkällor: naturgas, kol och biomassa. För att maximera utbytet av medeldestillat, utförs processen i två huvudsteg: FT-syntes som producerar långa kolväten (vaxer) och ett hydrokrackning steg, för att selektivt omvandla vaxerna till bränslen. Diesel som produceras med denna process kännetecknas av utmärkta förbränningsegenskaper och ger upphov till minskade utsläpp av skadliga ämnen jämfört med vanlig diesel. På grund av det växande intresset för syntetiska bränslen, både från industrin och den akademiska världen, och av de speciella egenskaperna hos Fischer-Tropsch-produkter, har forskningen i vätekrackning fått förnyad uppmärksamhet. Ämnet för detta arbete, som är en sammanfattning av fyra vetenskapliga publikationer, är katalysatorer för hydrokrackning av långkedjiga paraffiner. Ädelmetaller uppburna på sura bärare har jämförts, särskilt vad gäller vätekrackningsmekanismer. Katalysatorerna preparerades och karaktäriserades med hjälp av olika tekniker, bland andra N2 fysisorption, H2 kemisorption, TEM, pyridin adsorption FTIR, ammoniak TPD, etc. Det visade sig att den katalytiska aktiviteten är främst beroende av surheten hos bärarmaterialet, att selektivitet är starkt beroende av omsättningen, där hög omsättning gynnar flergrenade krackningsprodukter. Två huvudsakliga reaktionsvägar observerades: bifunktionell vätekrackning och hydrogenolytisk crackning. Platinakatalysatorer visade hög selektivitet mot det senare, medan katalysatorer med palladium på kiseloxid-aluminiumoxid uppträdde som rena bifunktionella katalysatorer. Katalysatordeaktivering undersöktes och sintring av metallpartiklar observerades. Koksning var också en orsak till deaktivering. Koksbildning var starkt beroende av metallhalten i katalysatorerna. Metallhalten påverkade också selektivitet, särskilt för platina-kiseloxid-aluminiumoxidkatalysatorer. Monofunktionellt hydrogenolys på platinapartiklarna, observerades utöver den bifunktionella mekanismen. Med denna reaktionsväg ökade selektivitet mot linjära kolväten och metan, med ökande platinahalter på katalysator. Den specifika reaktionshastigheten för hydrogenolys var konstant för olika platinahalter på en sur kiseloxid-aluminiumoxidbärare. Den hydrogenolytiska aktiviteten hos platina katalytiska säten påverkas negativt när en mindre sur bärare användes. Slutsatsen var att interaktioner mellan metallen och bäraren kan spela en viktig roll för de katalytiska egenskaperna hos platina ytor. Detta arbete har bidragit till att öka kunskapen om vätekrackning av långkedjiga alkaner och påpekade vissa funktioner som kan ha praktiskt intresse vid tillämpningen av denna teknik för produktionen av syntetiska bränslen.QC 20131007</p
Hydrocracking of n-hexadecane on noble metal/silica–alumina catalysts
Bifunctional catalysts consisting of platinum or palladium on amorphous silica-alumina were prepared and tested in the hydrocracking of n-hexadecane (n-C16H34). Product selectivities toward mono-branched and multi-branched feed isomers and cracking products have been determined in a wide range of conversions, varying liquid hourly space velocity at constant operating parameters (pressure = 30 bar; temperature = 310 C; H 2/n-C16H34 feed molar ratio = 10). A simple kinetic study is presented, in which the reactions are approximated by a network of pseudo first order irreversible reaction steps. The reaction network model was fitted to the experimental data, and kinetic constants for the different reaction steps were obtained. It could be concluded that mono-branched feed isomers are primary products in the hydrocracking/hydroisomerization reaction network; multi-branched isomers are formed mainly from mono-branched as a secondary product. On the platinum catalyst cracking products were formed as primary products, and it proved to be slightly more active than the palladium based one, at the same metallic molar loading. It could be shown that the platinum catalyst yields cracking products both via a bifunctional metal/acid mechanism and by monofunctional (metal only) hydrogenolysis. This second mechanism accounted for the higher activity of the platinum catalyst.</p
Preparation of zirconium oxide particles for catalyst supports by the microemulsion technique. Characterization by X-Ray diffraction, BET, SEM-EDX, FT-IR and catalytic tests.
Hydroconversion of model Fischer‑Tropsch wax over noble metal/silica-alumina catalysts [Elektronisk resurs]
Synthetic fuels produced using the Fischer-Tropsch technology will play an important role in the future of the transportation sector. The Fischer-Tropsch synthesis (FTS) allows converting synthesis gas (CO + H2) into fuels of outstanding quality. The synthesis gas can be obtained from different carbon sources: natural gas, coal and biomass. In order to maximize the yield of middle distillates, the process is carried out in two main steps: the FT-synthesis that produces long-chain hydrocarbons (waxes) and a hydrocracking step, to selectively convert the waxes into fuels. Diesel produced by this process is characterized by excellent combustion properties and reduced harmful tailpipe emissions compared to conventional diesel.Due to the growing interest in synthetic fuel production, from the industry and the academia, and to the peculiar characteristics of the Fischer-Tropsch products, research in hydrocracking has received renewed attention. Catalysts for the hydrocracking of long-chain paraffins have been the subject of the present work, which is the summary of four scientific publications.Noble metals supported on acid carriers have been compared, especially for what regards the mechanisms through which hydrocracking proceeds. The catalysts were synthesized and characterized by various techniques, including N2 physisorption, H2 chemisorption, TEM, pyridine adsorption FTIR, ammonia TPD, etc. It was shown that catalytic activity is mainly dependent on the acid support used; that selectivity is strongly dependent on conversion, high conversion favoring highly branched cracking products. Two main reaction routes were observed: bifunctional hydrocracking and hydrogenolytic cracking. Platinum-containing catalysts showed high selectivity towards the latter, while palladium/silica-alumina behaved as pure bifunctional catalysts. Catalyst deactivation was investigated and initial sintering of metal particles was observed. Coking was also a cause of deactivation. Formation of coke deposits was highly dependent on the metal loading of the catalysts. Metal loading also influenced catalyst selectivity, especially in the case of platinum/silica-alumina catalysts. Monofunctional hydrogenolysis on the platinum particles, superimposed to the bifunctional mechanism was observed. This route increased selectivity towards linear hydrocarbons and methane, with increasing amounts of platinum. The specific rate of hydrogenolysis was constant for different loadings of platinum on the same acid silica-alumina support. Using a different, less acid, support negatively affected the hydrogenolytic activity of the platinum catalytic sites. It was concluded that metal-support interactions might play an important role in the catalytic properties of platinum surfaces.This work has contributed to increasing the knowledge about hydrocracking of long-chain alkanes and pointed out some features that might have practical interest in the application of this technology to synthetic-fuel production.Syntetiska drivmedel tillverkade genom Fischer-Tropsch teknologin kommer i framtiden att ha en betydande roll för transportsektorn. Fischer-Tropsch syntesen (FTS) möjliggör omvandling av syntesgas (CO + H2) till högkvalitativa bränslen. Syntesgasen kan erhållas från olika kolkällor: naturgas, kol och biomassa. För att maximera utbytet av medeldestillat, utförs processen i två huvudsteg: FT-syntes som producerar långa kolväten (vaxer) och ett hydrokrackning steg, för att selektivt omvandla vaxerna till bränslen. Diesel som produceras med denna process kännetecknas av utmärkta förbränningsegenskaper och ger upphov till minskade utsläpp av skadliga ämnen jämfört med vanlig diesel.På grund av det växande intresset för syntetiska bränslen, både från industrin och den akademiska världen, och av de speciella egenskaperna hos Fischer-Tropsch-produkter, har forskningen i vätekrackning fått förnyad uppmärksamhet. Ämnet för detta arbete, som är en sammanfattning av fyra vetenskapliga publikationer, är katalysatorer för hydrokrackning av långkedjiga paraffiner.Ädelmetaller uppburna på sura bärare har jämförts, särskilt vad gäller vätekrackningsmekanismer. Katalysatorerna preparerades och karaktäriserades med hjälp av olika tekniker, bland andra N2 fysisorption, H2 kemisorption, TEM, pyridin adsorption FTIR, ammoniak TPD, etc. Det visade sig att den katalytiska aktiviteten är främst beroende av surheten hos bärarmaterialet, att selektivitet är starkt beroende av omsättningen, där hög omsättning gynnar flergrenade krackningsprodukter. Två huvudsakliga reaktionsvägar observerades: bifunktionell vätekrackning och hydrogenolytisk crackning. Platinakatalysatorer visade hög selektivitet mot det senare, medan katalysatorer med palladium på kiseloxid-aluminiumoxid uppträdde som rena bifunktionella katalysatorer. Katalysatordeaktivering undersöktes och sintring av metallpartiklar observerades. Koksning var också en orsak till deaktivering. Koksbildning var starkt beroende av metallhalten i katalysatorerna. Metallhalten påverkade också selektivitet, särskilt för platina-kiseloxid-aluminiumoxidkatalysatorer. Monofunktionellt hydrogenolys på platinapartiklarna, observerades utöver den bifunktionella mekanismen. Med denna reaktionsväg ökade selektivitet mot linjära kolväten och metan, med ökande platinahalter på katalysator. Den specifika reaktionshastigheten för hydrogenolys var konstant för olika platinahalter på en sur kiseloxid-aluminiumoxidbärare. Den hydrogenolytiska aktiviteten hos platina katalytiska säten påverkas negativt när en mindre sur bärare användes. Slutsatsen var att interaktioner mellan metallen och bäraren kan spela en viktig roll för de katalytiska egenskaperna hos platina ytor.Detta arbete har bidragit till att öka kunskapen om vätekrackning av långkedjiga alkaner och påpekade vissa funktioner som kan ha praktiskt intresse vid tillämpningen av denna teknik för produktionen av syntetiska bränslen.</p
Theoretical Assessment of Rigs for Accelerated Ash Accumulation in Diesel Particulate Filters
Investigation of Mixtures of a Co-Based Catalyst and a Cu-Based Catalyst for the Fischer–Tropsch Synthesis with Bio-Syngas: The Importance of Indigenous Water
A series of different mechanical mixtures of a narrow-pore Co/γ-Al2O3 catalyst and a Cu-based WGScatalyst has been investigated in the low-temperature Fischer-Tropsch synthesis (483 K, 20 bar) with a model bio-syngas (H2/CO = 1.0) in a fixed-bed reactor. The higher the fraction of WGS-catalyst in the mixture, the lower is the Co-catalyst-time yield to hydrocarbons. This is ascribed to a strong positive kinetic effect of water on the Fischer-Tropsch rate of the Co-catalyst, showing the importance of the indigenously produced water, especially in fixed-bed reactors where the partial pressure of water is zero at the reactor inlet. A preliminary kinetic modeling suggests that the reaction order in PH2O is 0.3 for the Co/γ-Al2O3 catalyst in the range of the studied reactor-average partial pressures of water (i.e., 0.04-1.2 bar).</p
Deactivation of a Pt/Silica–Alumina Catalyst and Effect on Selectivity in the Hydrocracking of n-Hexadecane
The deactivation behavior of a bifunctionalcatalyst consisting of platinum on amorphous silica–aluminawas studied in the hydrocracking of n-hexadecane.The initial decline in activity and the change in selectivitywere monitored at the following reaction conditions:pressure = 30 bar; temperature = 310 C; hydrogen-tohexadecanefeed molar ratio = 10. Initially, hexadecaneconversion and selectivity to cracking products decreasedrapidly with time-on-stream, and stabilized after 40 h onstream. This could be related to an initial loss of metalsurface area, which decreased the activity of monofunctionalhydrogenolysis generating cracking products. Theacidic function seemed to be unaffected under these reactionconditions. The stable catalyst was exposed to a lowerhydrogen-to-hexadecane ratio to accelerate deactivation bycoking. A decline in the activity of both functions wasobserved. The activity of the acidic function could bealmost completely recovered by oxidative regeneration,while the metal activity was only partially recovered.</p
Assessment of the Impact of Trace Elements in FAME Biodiesel on Diesel Oxidation Catalyst Activity after Full Lifetime of Operation in A Heavy-Duty Truck
Fatty acid methyl ester (FAME) biodiesel contains some trace amounts of Na, K, P, Ca, and Mg. Our objective was to investigate whether the presence of such elements can poison a diesel oxidation catalyst that has been used for an entire regulatory lifetime in a heavy-duty truck fueled by FAME biodiesel. The investigated vehicle-aged catalyst contained high loadings of S, P, and Na, as well as a visible layer of soot. Activity in the NO oxidation reaction was severely decreased compared to a fresh catalyst of the same type, while the CO and C3H6 oxidation reactions were less affected. Subsequent selective trace element removal procedures, followed by activity tests, were used to decouple the effect of different poisons. Sintering was observed to be the main cause of catalyst deactivation. Of the trace elements present on the catalyst, P had the greatest effect on catalyst activity, while the other trace elements had little effect.</jats:p
