501 research outputs found

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Common genetic variation in cellular transport genes and epithelial ovarian cancer (EOC) risk

    Get PDF
    Background Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. Methods In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. Results The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). Conclusion These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes

    Assessing the genetic architecture of epithelial ovarian cancer histological subtypes.

    Get PDF
    Epithelial ovarian cancer (EOC) is one of the deadliest common cancers. The five most common types of disease are high-grade and low-grade serous, endometrioid, mucinous and clear cell carcinoma. Each of these subtypes present distinct molecular pathogeneses and sensitivities to treatments. Recent studies show that certain genetic variants confer susceptibility to all subtypes while other variants are subtype-specific. Here, we perform an extensive analysis of the genetic architecture of EOC subtypes. To this end, we used data of 10,014 invasive EOC patients and 21,233 controls from the Ovarian Cancer Association Consortium genotyped in the iCOGS array (211,155 SNPs). We estimate the array heritability (attributable to variants tagged on arrays) of each subtype and their genetic correlations. We also look for genetic overlaps with factors such as obesity, smoking behaviors, diabetes, age at menarche and height. We estimated the array heritabilities of high-grade serous disease ([Formula: see text] = 8.8 ± 1.1 %), endometrioid ([Formula: see text] = 3.2 ± 1.6 %), clear cell ([Formula: see text] = 6.7 ± 3.3 %) and all EOC ([Formula: see text] = 5.6 ± 0.6 %). Known associated loci contributed approximately 40 % of the total array heritability for each subtype. The contribution of each chromosome to the total heritability was not proportional to chromosome size. Through bivariate and cross-trait LD score regression, we found evidence of shared genetic backgrounds between the three high-grade subtypes: serous, endometrioid and undifferentiated. Finally, we found significant genetic correlations of all EOC with diabetes and obesity using a polygenic prediction approach.The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07). The Nurses’ Health Studies would like to thank the participants and staff of the Nurses' Health Study and Nurses' Health Study II for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data. Funding of the constituent studies was provided by the California Cancer Research Program (00-01389V-20170, N01-CN25403, 2II0200); the Canadian Institutes of Health Research (MOP-86727); Cancer Australia; Cancer Council Victoria; Cancer Council Queensland; Cancer Council New South Wales; Cancer Council South Australia; Cancer Council Tasmania; Cancer Foundation of Western Australia; the Cancer Institute of New Jersey; Cancer Research UK (C490/A6187, C490/A10119, C490/A10124); the Danish Cancer Society (94-222-52); the ELAN Program of the University of Erlangen-Nuremberg; the Eve Appeal; the Helsinki University Central Hospital Research Fund; Helse Vest; the Norwegian Cancer Society; the Norwegian Research Council; the Ovarian Cancer Research Fund; Nationaal Kankerplan of Belgium; the L & S Milken Foundation; the Polish Ministry of Science and Higher Education (4 PO5C 028 14, 2 PO5A 068 27); the Roswell Park Cancer Institute Alliance Foundation; the US National Cancer Institute (K07-CA095666, K07-CA80668, K07-CA143047, K22-CA138563, N01-CN55424, N01-PC67001, N01-PC067010, N01-PC035137, P01-CA017054, P01-CA087696, P30-CA072720, P30-CA15083, P30-CA008748, P50-CA159981, P50-CA105009, P50-CA136393, R01-CA149429, R01-CA014089, R01-CA016056, R01-CA017054, R01-CA049449, R01-CA050385, R01-CA054419, R01-CA058598, R01-CA058860, R01-CA061107, R01-CA061132, R01-CA063678, R01-CA063682, R01-CA067262, R01-CA071766, R01-CA074850, R01-CA080978, R01-CA083918, R01-CA087538, R01-CA092044, R01-CA095023, R01-CA122443, R01-CA112523, R01-CA114343, R01-CA126841, R01-CA136924, R03-CA113148, R03-CA115195, U01-CA069417, U01-CA071966, UM1-CA186107, UM1-CA176726 and Intramural research funds); the NIH/National Center for Research Resources/General Clinical Research Center (MO1-RR000056); the US Army Medical Research and Material Command (DAMD17-01-1-0729, DAMD17-02-1-0666, DAMD17-02-1-0669, W81XWH-07-0449, W81XWH-10-1-02802); the US Public Health Service (PSA-042205); the National Health and Medical Research Council of Australia (199600 and 400281); the German Federal Ministry of Education and Research of Germany Programme of Clinical Biomedical Research (01GB 9401); the State of Baden-Wurttemberg through Medical Faculty of the University of Ulm (P.685); the German Cancer Research Center; the Minnesota Ovarian Cancer Alliance; the Mayo Foundation; the Fred C. and Katherine B. Andersen Foundation; the Lon V. Smith Foundation (LVS-39420); the Oak Foundation; Eve Appeal; the OHSU Foundation; the Mermaid I project; the Rudolf-Bartling Foundation; the UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge, Imperial College London, University College Hospital ‘Womens Health Theme’ and the Royal Marsden Hospital; and WorkSafeBC 14. Investigator-specific funding: G.C.P receives scholarship support from the University of Queensland and QIMR Berghofer. Y.L. was supported by the NHMRC Early Career Fellowship. G.C.T. is supported by the National Health and Medical Research Council. S.M. was supported by an ARC Future Fellowship

    Common variants at theCHEK2gene locus and risk of epithelial ovarian cancer

    Get PDF
    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r (2) with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1×10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene.Other Research Uni

    Shared genetics underlying epidemiological association between endometriosis and ovarian cancer

    Get PDF
    Epidemiological studies have demonstrated associations between endometriosis and certain histotypes of ovarian cancer, including clear cell, low-grade serous and endometrioid carcinomas. We aimed to determine whether the observed associations might be due to shared genetic aetiology. To address this, we used two endometriosis datasets genotyped on common arrays with full-genome coverage (3194 cases and 7060 controls) and a large ovarian cancer dataset genotyped on the customized Illumina Infinium iSelect (iCOGS) arrays (10 065 cases and 21 663 controls). Previous work has suggested that a large number of genetic variants contribute to endometriosis and ovarian cancer (all histotypes combined) susceptibility. Here, using the iCOGS data, we confirmed polygenic architecture for most histotypes of ovarian cancer. This led us to evaluate if the polygenic effects are shared across diseases. We found evidence for shared genetic risks between endometriosis and all histotypes of ovarian cancer, except for the intestinal mucinous type. Clear cell carcinoma showed the strongest genetic correlation with endometriosis (0.51, 95% CI = 0.18-0.84). Endometrioid and low-grade serous carcinomas had similar correlation coefficients (0.48, 95% CI = 0.07-0.89 and 0.40, 95% CI = 0.05-0.75, respectively). High-grade serous carcinoma, which often arises from the fallopian tubes, showed a weaker genetic correlation with endometriosis (0.25, 95% CI = 0.11-0.39), despite the absence of a known epidemiological association. These results suggest that the epidemiological association between endometriosis and ovarian adenocarcinoma may be attributable to shared genetic susceptibility loci.Other Research Uni

    Offspring sex and risk of epithelial ovarian cancer: a multinational pooled analysis of 12 case-control studies

    Get PDF
    While childbearing protects against risk of epithelial ovarian cancer (EOC), few studies have explored the impact on maternal EOC risk of sex of offspring, which may affect the maternal environment during pregnancy. We performed a pooled analysis among parous participants from 12 case–controls studies comprising 6872 EOC patients and 9101 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using multivariable logistic regression for case–control associations and polytomous logistic regression for histotype-specific associations, all adjusted for potential confounders. In general, no associations were found between offspring sex and EOC risk. However, compared to bearing only female offspring, bearing one or more male offspring was associated with increased risk of mucinous EOC (OR = 1.45; 95% CI = 1.01-2.07), which appeared to be limited to women reporting menarche before age 13 compared to later menarche (OR = 1.71 vs 0.99; P-interaction = 0.02). Bearing increasing numbers of male offspring was associated with greater risks of mucinous tumors (OR = 1.31, 1.84, 2.31, for 1, 2 and 3 or more male offspring, respectively; trend-p = 0.005). Stratifying by hormonally-associated conditions suggested that compared to bearing all female offspring, bearing a male offspring was associated with lower risk of endometrioid cancer among women with a history of adult acne, hirsutism, or polycystic ovary syndrome (OR = 0.49, 95% CI = 0.28-0.83) but with higher risk among women without any of those conditions (OR = 1.64 95% CI = 1.14–2.34; P-interaction = 0.003). Offspring sex influences the childbearing-EOC risk relationship for specific histotypes and conditions. These findings support the differing etiologic origins of EOC histotypes and highlight the importance of EOC histotype-specific epidemiologic studies. These findings also suggest the need to better understand how pregnancy affects EOC ris

    Association of Frequent Aspirin Use With Ovarian Cancer Risk According to Genetic Susceptibility

    Get PDF
    IMPORTANCE: Frequent aspirin use is associated with reduced ovarian cancer risk, but it is unknown whether genetic factors modify this association. Understanding effect modifiers is important given that any use of aspirin for ovarian cancer chemoprevention will likely need to focus on specific higher-risk subgroups. OBJECTIVE: To evaluate whether the association between frequent aspirin use and ovarian cancer is modified by a polygenic score (PGS) for nonmucinous ovarian cancer. DESIGN, SETTING, AND PARTICIPANTS: We pooled individual-level data from 8 population-based case-control studies from the Ovarian Cancer Association Consortium conducted in the US, UK, and Australia between 1995 and 2009. We included case patients and control participants with both genetic data and data on frequent aspirin use. Case patients with mucinous ovarian cancer were excluded. Data were analyzed between November 1, 2021, and July 31, 2022. EXPOSURES: Frequent aspirin use, defined as daily or almost daily use for 6 months or longer. MAIN OUTCOMES AND MEASURES: The main outcome was nonmucinous epithelial ovarian cancer. We used logistic regression to estimate odds ratios (ORs) and 95% CIs and likelihood ratio tests to investigate effect modification by the PGS. RESULTS: There were 4476 case patients with nonmucinous ovarian cancer and 6659 control participants included in this analysis. At study enrollment, the median (IQR) age was 58 (50-66) years for case patients and 57 (49-65) years for control participants. Case patients and control participants self-reported that they were Black (122 [3%] vs 218 [3%]), White (3995 [89%] vs 5851 [88%]), or of other race and ethnicity (348 [8%] vs 580 [9%]; race and ethnicity were unknown for 11 [0%] vs 10 [0%]). There were 575 case patients (13%) and 1030 control participants (15%) who reported frequent aspirin use. The 13% reduction in ovarian cancer risk associated with frequent aspirin use (OR, 0.87 [95% CI, 0.76-0.99]) was not modified by the PGS. Consistent ORs were observed among individuals with a PGS less than (0.85 [0.70-1.02]) and greater than (0.86 [0.74-1.01]) the median. Results were similar by histotype. CONCLUSIONS AND RELEVANCE: The findings of this study suggest that genetic susceptibility to ovarian cancer based on currently identified common genetic variants does not appear to modify the protective association between frequent aspirin use and ovarian cancer risk. Future work should continue to explore the role of aspirin use for ovarian cancer prevention among individuals who are at higher risk for ovarian cancer

    DNA Methylation Profiles of Ovarian Clear Cell Carcinoma

    Get PDF
    BACKGROUND: Ovarian clear cell carcinoma (OCCC) is a rare ovarian cancer histotype that tends to be resistant to standard platinum-based chemotherapeutics. We sought to better understand the role of DNA methylation in clinical and biological subclassification of OCCC. METHODS: We interrogated genome-wide methylation using DNA from fresh frozen tumors from 271 cases, applied non-smooth non-negative matrix factorization (nsNMF) clustering, and evaluated clinical associations and biological pathways. RESULTS: Two approximately equally sized clusters that associated with several clinical features were identified. Compared to Cluster 2 (N=137), Cluster 1 cases (N=134) presented at a more advanced stage, were less likely to be of Asian ancestry, and tended to have poorer outcomes including macroscopic residual disease following primary debulking surgery (p-values <0.10). Subset analyses of targeted tumor sequencing and immunohistochemical data revealed that Cluster 1 tumors showed TP53 mutation and abnormal p53 expression, and Cluster 2 tumors showed aneuploidy and ARID1A/PIK3CA mutation (p-values <0.05). Cluster-defining CpGs included 1,388 CpGs residing within 200 bp of the transcription start sites of 977 genes; 38% of these genes (N=369 genes) were differentially expressed across cluster in transcriptomic subset analysis (p-values <10(−4)). Differentially expressed genes were enriched for six immune-related pathways, including interferon alpha and gamma responses (p-values < 10(−6)). CONCLUSIONS: DNA methylation clusters in OCCC correlate with disease features and gene expression patterns among immune pathways. IMPACT: This work serves as a foundation for integrative analyses that better understand the complex biology of OCCC in an effort to improve potential for development of targeted therapeutics

    Patterns of associations with epidemiologic factors by high grade serous ovarian cancer gene expression subtypes.

    Get PDF
    BACKGROUND: Ovarian high-grade serous carcinomas (HGSC) comprise four distinct molecular subtypes based on mRNA expression patterns, with differential survival. Understanding risk factor associations is important to elucidate the etiology of HGSC. We investigated associations between different epidemiologic risk factors and HGSC molecular subtypes. METHODS: We pooled data from 11 case-control studies with epidemiologic and tumor gene expression data from custom NanoString CodeSets developed through a collaboration within the Ovarian Tumor Tissue Analysis Consortium. The PrOTYPE validated NanoString-based 55 gene classifier was used to assign HGSC gene expression subtypes. We examined associations between epidemiologic factors and HGSC subtypes in 2,070 cases and 16,633 controls using multivariable-adjusted polytomous regression models. RESULTS: Among the 2,070 HGSC cases, 556 (27%) were classified as C1.MES, 340 (16%) as C5.PRO, 538 (26%) as C2.IMM, and 636 (31%) as C4.DIF. Key factors, including oral contraceptive use, parity, breastfeeding, and family history of ovarian cancer, were similarly associated with all subtypes. Heterogeneity was observed for several factors. Former smoking (OR=1.25, 95%CI: 1.03, 1.51) and genital powder use (OR=1.42, 95%CI: 1.08, 1.86) were uniquely associated with C2.IMM. History of endometriosis was associated with C5.PRO (OR=1.46, 95%CI: 0.98, 2.16) and C4.DIF (OR=1.27, 95%CI: 0.94, 1.71) only. Family history of breast cancer (OR=1.44, 95%CI: 1.16, 1.78) and current smoking (OR=1.40, 95%CI: 1.11, 1.76) were associated with C4.DIF only. CONCLUSIONS: This study observed heterogeneous associations of epidemiologic and modifiable factors with HGSC molecular subtypes. IMPACT: The different patterns of associations may provide key information about the etiology of the four subtypes
    corecore