4,979 research outputs found

    Thermodynamics in the NC disc

    Get PDF
    We study the thermodynamics of a scalar field on a noncommutative disc implementing the boundary as the limit case of an interaction with an appropriately chosen confining background. We explicitly obtain expressions for thermodynamic potentials of gases of particles obeying different statistics. In order to do that, we derive an asymptotic expansion for the density of the zeros of Laguerre polynomials. As a result we prove that the Bose-Einstein condensation in the noncommutative disc does not take place.Fil: Franchino Viñas, Sebastián Alberto. Universitat Jena; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Pisani, P.. Facultad de Ciencias Exactas, Universidad Nacional de la Plata; Argentin

    Resistive MSGC with double layered electrodes

    Full text link
    The first successful attempts to optimize the electric field in Resistive Microstrip Gas Chamber (RMSGC) using additional field shaping strips located inside the detector substrate are described.Comment: Presented at 13th RD51 Collaboration meeting, CERN, Febr. 201

    Measurement of the muon inclusive cross section in pp collisions at s\sqrt{s} = 7 TeV with the ATLAS detector

    Full text link
    The measurement of the muon inclusive differential cross section dsigma/dpT in pp collisions at sqrt(s)=7 TeV with the ATLAS detector is presented. The analysis is performed in the pseudorapidity interval |eta|< 2.5 for muon of transverse momentum 4 < pT < 100 GeV and with an integrated luminosity of 1.4 pb-1. The result is compared with the next-to-leading order with next-to-leading log high pT resummation prediction for the heavy avour production and with MC@NLO prediction for W-Z bosons production. The measurement is sensitive for the first time to the next-to-leading log contribution to the heavy flavour production in hadronic interactions.Comment: 3 pag, 2 figures, proceedings for the conference PIC2011, Vancouver, August28, Sept 1, 201

    Boundaries in the Moyal plane

    Get PDF
    We study the oscillations of a scalar field on a noncommutative disc implementing the boundary as the limit case of an interaction with an appropriately chosen confining background. The space of quantum fluctuations of the field is finite dimensional and displays the rotational and parity symmetry of the disc. We perform a numerical evaluation of the (finite) Casimir energy and obtain similar results as for the fuzzy sphere and torus.Comment: 19 pages, 6 figures. Replaced by published versio

    Demonstration of new possibilities of multilayer technology on resistive microstrip/ microdot detectors

    Full text link
    The first successful attempts to optimize the electric field in Resistive Microstrip Gas Chamber and resistive microdot detectors using additional field shaping strips located inside the detector substrate are describedComment: Presented at the RD-51 mmini week, CERN, June 201

    Semi-transparent Boundary Conditions in the Worldline Formalism

    Full text link
    The interaction of a quantum field with a background containing a Dirac delta function with support on a surface of codimension 1 represents a particular kind of matching conditions on that surface for the field. In this article we show that the worldline formalism can be applied to this model. We obtain the asymptotic expansion of the heat-kernel corresponding to a scalar field on Rd+1\mathbb{R}^{d+1} in the presence of an arbitrary regular potential and subject to this kind of matching conditions on a flat surface. We also consider two such surfaces and compute their Casimir attraction due to the vacuum fluctuations of a massive scalar field weakly coupled to the corresponding Dirac deltas.Comment: 12 page

    Fiber and crystals dual readout calorimeters

    Get PDF
    The RD52 (DREAM) collaboration is performing R&D on dual readout calorimetry techniques with the aim of improving hadronic energy resolution for future high energy physics experiments. The simultaneous detection of Cherenkov and scintillation light enables us to measure the electromagnetic fraction of hadron shower event-by-event. As a result, we could eliminate the main fluctuation which prevented from achieving precision energy measurement for hadrons. We have tested the performance of the lead and copper fiber prototypes calorimeters with various energies of electromagnetic particles and hadrons. During the beam test, we investigated the energy resolutions for electrons and pions as well as the identification of those particles in a longitudinally unsegmented calorimeter. Measurements were also performed on pure and doped PbWO4 crystals, as well as BGO and BSO, with the aim of realizing a crystal based dual readout detector. We will describe our results, focusing on the more promising properties of homogeneous media for the technique. Guidelines for additional developments on crystals will be also given. Finally we discuss the construction techniques that we have used to assemble our prototypes and give an overview of the ones that could be industrialized for the construction of a full hermetic calorimeter
    corecore