13,277 research outputs found
Weather forecasting for weather derivatives : [revised version: January 2, 2004]
We take a simple time-series approach to modeling and forecasting daily average temperature in U.S. cities, and we inquire systematically as to whether it may prove useful from the vantage point of participants in the weather derivatives market. The answer is, perhaps surprisingly, yes. Time-series modeling reveals conditional mean dynamics, and crucially, strong conditional variance dynamics, in daily average temperature, and it reveals sharp differences between the distribution of temperature and the distribution of temperature surprises. As we argue, it also holds promise for producing the long-horizon predictive densities crucial for pricing weather derivatives, so that additional inquiry into time-series weather forecasting methods will likely prove useful in weather derivatives contexts
Stock returns and expected business conditions : half a century of direct evidence
We explore the macro/finance interface in the context of equity markets. In particular, using half a century of Livingston expected business conditions data we characterize directly the impact of expected business conditions on expected excess stock returns. Expected business conditions consistently affect expected excess returns in a statistically and economically significant counter-cyclical fashion: depressed expected business conditions are associated with high expected excess returns. Moreover, inclusion of expected business conditions in otherwise standard predictive return regressions substantially reduces the explanatory power of the conventional financial predictors, including the dividend yield, default premium, and term premium, while simultaneously increasing R2. Expected business conditions retain predictive power even after controlling for an important and recently introduced non-financial predictor, the generalized consumption/wealth ratio, which accords with the view that expected business conditions play a role in asset pricing different from and complementary to that of the consumption/wealth ratio. We argue that time-varying expected business conditions likely capture time-varying risk, while time-varying consumption/wealth may capture time-varying risk aversion. Klassifikation: G1
Stock Returns and Expected Business Conditions: Half a Century of Direct Evidence
We explore the macro/finance interface in the context of equity markets. In particular, using half a century of Livingston expected business conditions data we characterize directly the impact of expected business conditions on expected excess stock returns. Expected business conditions consistently affect expected excess returns in a statistically and economically significant counter-cyclical fashion: depressed expected business conditions are associated with high expected excess returns. Moreover, inclusion of expected business conditions in otherwise standard predictive return regressions substantially reduces the explanatory power of the conventional financial predictors, including the dividend yield, default premium, and term premium, while simultaneously increasing. Expected business conditions retain predictive power even after controlling for an important and recently introduced non-financial predictor, the generalized consumption/wealth ratio, which accords with the view that expected business conditions play a role in asset pricing different from and complementary to that of the consumption/wealth ratio. We argue that time-varying expected business conditions likely capture time-varying risk, while time-varying consumption/wealth may capture time-varying risk aversion.Business cycle, expected equity returns, prediction, Livingston survey, risk aversion, equity premium, risk premium
Modeling Bond yields in finance and macroeconomics
From a macroeconomic perspective, the short-term interest rate is a policy instrument under the direct control of the central bank. From a finance perspective, long rates are risk-adjusted averages of expected future short rates. Thus, as illustrated by much recent research, a joint macro-finance modeling strategy will provide the most comprehensive understanding of the term structure of interest rates. We discuss various questions that arise in this research, and we also present a new examination of the relationship between two prominent dynamic, latent factor models in this literature: the Nelson-Siegel and affine no-arbitrage term structure models. JEL Klassifikation: G1, E4, E5
The macroeconomy and the yield curve: a nonstructural analysis
We estimate a model with latent factors that summarize the yield curve (namely, level, slope, and curvature) as well as observable macroeconomic variables (real activity, inflation, and the stance of monetary policy). Our goal is to provide a characterization of the dynamic interactions between the macroeconomy and the yield curve. We find strong evidence of the effects of macro variables on future movements in the yield curve and much weaker evidence for a reverse influence. We also relate our results to a traditional macroeconomic approach based on the expectations hypothesis
Measuring Business Cycles: A Modern Perspective
In the first half of this century, special attention was given to two features of the business cycle: (1) the comovement of many individual economic series and (2) the different behavior of the economy during expansions and contractions. Both of these attributes were ignored in many subsequent business cycle models, which were often linear representations of a single macroeconomic aggregate. However, recent theoretical and empirical research has revived interest in each attribute separately. Notably, dynamic factor models have been used to obtain a single common factor from a set of macroeconomic variables, and nonlinear models have been used to describe the regime-switching nature of aggregate output. We survey these two strands of research and then provide some suggestive empirical analysis in an effort to unite the two literatures and to assess their usefulness in a statistical characterization of business- cycle dynamics.
The Macroeconomy and the Yield Curve: A Dynamic Latent Factor Approach
We estimate a model that summarizes the yield curve using latent factors (specifically, level, slope, and curvature) and also includes observable macroeconomic variables (specifically, real activity, inflation, and the monetary policy instrument). Our goal is to provide a characterization of the dynamic interactions between the macroeconomy and the yield curve. We find strong evidence of the effects of macro variables on future movements in the yield curve and evidence for a reverse influence as well. We also relate our results to the expectations hypothesis.
The Macroeconomy and the Yield Curve: A Nonstructural Analysis
We estimate a model with latent factors that summarize the yield curve (namely, level, slope, and curvature) as well as observable macroeconomic variables (real activity, inflation, and the stance of monetary policy). Our goal is to provide a characterization of the dynamic interactions between the macroeconomy and the yield curve. We find strong evidence of the effects of macro variables on future movements in the yield curve and much weaker evidence for a reverse influence. We also relate our results to a traditional macroeconomic approach based on the expectations hypothesis.Yield curve, term structure, interest rates, macroeconomic fundamentals, factor model, statespace model
Stock Returns and Expected Business Conditions: Half a Century of Direct Evidence
We explore the macro/finance interface in the context of equity markets. In particular, using half a century of Livingston expected business conditions data we characterize directly the impact of expected business conditions on expected excess stock returns. Expected business conditions consistently affect expected excess returns in a statistically and economically significant counter-cyclical fashion: depressed expected business conditions are associated with high expected excess returns. Moreover, inclusion of expected business conditions in otherwise standard predictive return regressions substantially reduces the explanatory power of the conventional financial predictors, including the dividend yield, default premium, and term premium, while simultaneously increasing R2. Expected business conditions retain predictive power even after controlling for an important and recently introduced non-financial predictor, the generalized consumption/wealth ratio, which accords with the view that expected business conditions play a role in asset pricing different from and complementary to that of the consumption/wealth ratio. We argue that time-varying expected business conditions likely capture time-varying risk, while time-varying consumption/wealth may capture time-varying risk aversion.Business Cycle, Expected Equity Returns, Prediction, Livingston Survey, Risk Aversion, Equity Premium, Risk Premium
Weather Forecasting for Weather Derivatives
We take a simple time-series approach to modeling and forecasting daily average temperature in U.S. cities, and we inquire systematically as to whether it may prove useful from the vantage point of participants in the weather derivatives market. The answer is, perhaps surprisingly, yes. Time-series modeling reveals conditional mean dynamics, and crucially, strong conditional variance dynamics, in daily average temperature, and it reveals sharp differences between the distribution of temperature and the distribution of temperature surprises. As we argue, it also holds promise for producing the long-horizon predictive densities crucial for pricing weather derivatives, so that additional inquiry into time-series weather forecasting methods will likely prove useful in weather derivatives contexts.Risk management; hedging; insurance; seasonality; temperature; financial derivatives
- …
