899 research outputs found

    Diazotroph community succession during the VAHINE mesocosm experiment (New Caledonia lagoon)

    Get PDF
    The VAHINE mesocosm experiment, conducted in the low-nutrient low-chlorophyll waters of the Noumea lagoon (coastal New Caledonia) was designed to trace the incorporation of nitrogen (N) fixed by diazotrophs into the food web, using large volume (50 m(3)) mesocosms. This experiment provided a unique opportunity to study the succession of different N-2-fixing microorganisms (diazotrophs) and calculate in situ net growth and mortality rates in response to fertilization with dissolved inorganic phosphate (DIP) over a 23-day period, using quantitative polymerase chain reaction (qPCR) assays targeting widely distributed marine diazotroph lineages. Inside the mesocosms, the most abundant diazotroph was the heterocyst-forming Richelia associated with Rhizosolenia (Het-1) in the first half of the experiment, while unicellular cyanobacterial Group C (UCYN-C) became abundant during the second half of the experiment. Decreasing DIP concentrations following the fertilization event and increasing temperatures were significantly correlated with increasing abundances of UCYN-C. Maximum net growth rates for UCYN-C were calculated to range between 1.23 +/- 0.07 and 2.16 +/- 0.07 d(-1) in the mesocosms, which are among the highest growth rates reported for diazotrophs. Outside the mesocosms in the New Caledonia lagoon, UCYN-C abundances remained low, despite increasing temperatures, suggesting that the microbial community response to the DIP fertilization created conditions favorable for UCYN-C growth inside the mesocosms. Diazotroph community composition analysis using PCR targeting a component of the nitrogenase gene (nifH) verified that diazotrophs targeted in qPCR assays were collectively among the major lineages in the lagoon and mesocosm samples, with the exception of Crocosphaera-like phylotypes, where sequence types not typically seen in the oligotrophic ocean grew in the mesocosms. Maximum net growth and mortality rates for nine diazotroph phylotypes throughout the 23-day experiment were variable between mesocosms, and repeated fluctuations between periods of net growth and mortality were commonly observed. The field population of diazotrophs in the New Caledonian lagoon waters appeared to be dominated by Het-1 over the course of the study period. However, results from both qPCR and PCR analysis indicated a diverse field population of diazotrophs was present in the lagoon at the time of sampling. Two ecotypes of the Braarudosphaera bigelowii symbiont unicellular group A (UCYN-A) were present simultaneously in the lagoon, with the recently described B. bigelowii/UCYN-A2 association present at higher abundances than the B. bigelowii/UCYN-A1 association

    Multiplicative renormalizability and quark propagator

    Get PDF
    The renormalized Dyson-Schwinger equation for the quark propagator is studied, in Landau gauge, in a novel truncation which preserves multiplicative renormalizability. The renormalization constants are formally eliminated from the integral equations, and the running coupling explicitly enters the kernels of the new equations. To construct a truncation which preserves multiplicative renormalizability, and reproduces the correct leading order perturbative behavior, non-trivial cancellations involving the full quark-gluon vertex are assumed in the quark self-energy loop. A model for the running coupling is introduced, with infrared fixed point in agreement with previous Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail. Dynamical chiral symmetry breaking is investigated, and the generated quark mass is of the order of the extension of the infrared plateau of the coupling, and about three times larger than in the Abelian approximation, which violates multiplicative renormalizability. The generated scale is of the right size for hadronic phenomenology, without requiring an infrared enhancement of the running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added; accepted for publication in Phys. Rev.

    V344 Lyrae: A Touchstone SU UMa Cataclysmic Variable in the Kepler Field

    Get PDF
    We report on the analysis of the Kepler short-cadence (SC) light curve of V344 Lyr obtained during 2009 June 20 through 2010 Mar 19 (Q2--Q4). The system is an SU UMa star showing dwarf nova outbursts and superoutbursts, and promises to be a touchstone for CV studies for the foreseeable future. The system displays both positive and negative superhumps with periods of 2.20 and 2.06-hr, respectively, and we identify an orbital period of 2.11-hr. The positive superhumps have a maximum amplitude of ~0.25-mag, the negative superhumps a maximum amplitude of ~0.8 mag, and the orbital period at quiescence has an amplitude of ~0.025 mag. The quality of the Kepler data is such that we can test vigorously the models for accretion disk dynamics that have been emerging in the past several years. The SC data for V344 Lyr are consistent with the model that two physical sources yield positive superhumps: early in the superoutburst, the superhump signal is generated by viscous dissipation within the periodically flexing disk, but late in the superoutburst, the signal is generated as the accretion stream bright spot sweeps around the rim of the non-axisymmetric disk. The disk superhumps are roughly anti-phased with the stream/late superhumps. The V344 Lyr data also reveal negative superhumps arising from accretion onto a tilted disk precessing in the retrograde direction, and suggest that negative superhumps may appear during the decline of DN outbursts. The period of negative superhumps has a positive dP/dt in between outbursts.Comment: ApJ, In Press (20 pages, 27 figures) A version with full-resolution figures is available at http://www.astro.fit.edu/wood/WoodV344.pd

    Regulation of nitrogen metabolism in the marine diazotroph Trichodesmium IMS101 under varying temperatures and atmospheric CO2 concentrations

    Get PDF
    We examined the influence of forecasted changes in global temperatures and pCO2 on N2 fixation and assimilation in the ecologically important cyanobacterium Trichodesmium spp. Changes of mRNA transcripts (nifH, glnA, hetR, psbA, psaB), protein (nitrogenase, glutamine synthetase) pools and enzymatic activity (nitrogenase) were measured under varying pCO2 and temperatures. High pCO2 shifted transcript patterns of all genes, resulting in a more synchronized diel expression. Under the same conditions, we did not observe any significant changes in the protein pools or in total cellular allocations of carbon and nitrogen (i.e. C : N ratio remained stable). Independently of temperature, high pCO2 (900 µatm) elevated N2 fixation rates. Levels of the key enzymes, nitrogenase and glutamine synthetase that mediate nitrogen assimilation did not increase, implying that the high pCO2 allowed higher reaction turnover rates through these key enzymes. Moreover, increased temperatures and high pCO2 resulted in higher C : P ratios. The plasticity in phosphorous stoichiometry combined with higher enzymatic efficiencies lead to higher growth rates. In cyanobacteria photosynthesis, carbon uptake, respiration, N2 fixation and nitrogen assimilation share cellular components. We propose that shifted cellular resource and energy allocation among those components will enable Trichodesmium grown at elevated temperatures and pCO2 to extend its niche in the future ocean, through both tolerance of a broader temperature range and higher P plasticity

    BeppoSAX observation of the eclipsing dipping X-ray binary X1658-298

    Get PDF
    Results of a 2000 August 12-13 BeppoSAX observation of the 7.1 hr eclipsing, dipping, bursting, transient, low-mass X-ray binary (LMXRB) X1658-298 are presented. The spectrum outside of eclipses, dips and bursts can be modeled by the combination of a soft disk-blackbody and a harder Comptonized component with a small amount (1.3 10E21 atom/cm2) of low-energy absorption. In contrast, an RXTE observation 18 months earlier during the same outburst, measured an absorption of 5.0 10E22 atom/cm2. Such a change is consistent with a thinning of the accretion disk as the outburst progresses. Structured residuals from the best-fit spectral model are present which are tentatively identified with Ne-K/Fe-L and Fe-K shell emission. The spectral changes during dips are complex and may be modeled by a strong (~3 10E23 atom/cm2) increase in absorption of the Comptonized component only, together with reductions in normalizations of both spectral components. This behavior is in contrast to the ``complex continuum'' model for X-ray dip sources, where the softer blackbody component rapidly suffers strong absorption. It is however, similar to that found during recent XMM-Newton observations of the eclipsing, dipping, LMXRB EXO0748-676.Comment: 11 pages. Accepted for publication in A&A

    Freezing of the QCD coupling constant and solutions of Schwinger-Dyson equations

    Full text link
    We compare phenomenological values of the frozen QCD running coupling constant (αs\alpha_s) with two classes of solutions obtained through nonperturbative Schwinger-Dyson equations. We use these same solutions with frozen coupling constants as well as their respective nonperturbative gluon propagators to compute the QCD prediction for the asymptotic pion form factor. Agreement between theory and experiment on αs(0)\alpha_s(0) and Fπ(Q2)F_\pi (Q^2) is found only for one of the solutions Schwinger-Dyson equations.Comment: 6 pages, 4 figures, RevTeX, axodra

    Shoaling with fish: using miniature robotic agents to close the interaction loop with groups of zebrafish Danio rerio

    Get PDF
    Robotic animals are nowadays developed for various types of research, such as bio-inspired robotics, biomimetics and animal behavior studies. The miniaturization of technologies and the increase in performance of embedded systems allowed engineers to develop more powerful, sophisticated and miniature devices. The case of robotic fish is a typical example of such challenging design: the fish locomotion and body movements are difficult to reproduce and the device has to move autonomously underwater. More specifically, in the case of collective animal behavior research, the robotic device has to interact with animals by generating and exploiting signals relevant for social behavior. Once perceived by the animal society as conspecific, these robots can become powerful tools to study the animal behaviors, as they can at the same time monitor the changes in behavior and influence the collective choices of the animal society. In this work, we present novel robotized tools that can integrate shoals of fish in order to study their collective behaviors. This robotic platform is composed of two subsystems: a miniature wheeled mobile robot that can achieve dynamic movements and multi-robot long-duration experiments, and a robotic fish lure that is able to beat its tail to generate fish-like body movements. The two subsystems are coupled with magnets which allows the wheeled mobile robot to steer the robotic fish lure so that it reaches very high speeds and accelerations while achieving shoaling. An experimental setup to conduct studies on mixed societies of artificial and living fish was designed to facilitate the experiments for biologists. A software framework was also implemented to control the robots in a closed-loop using data extracted from visual tracking that retrieved the position of the robots and the fish. We selected the zebrafish Danio rerio as a model to perform experiments to qualify our system. We used the current state of the art on the zebrafish social behavior to define the specifications of the robots, and we performed stimuli analysis to improve their developments. Bio-inspired controllers were designed based on data extracted from experiments with zebrafish for the robots to mimic the zebrafish locomotion underwater. Experiments involving a robot with a shoal of fish in a constrained environment showed that the locomotion of the robot was one of the main factor to affect the collective behavior of zebrafish. We also shown that the body movements and the biomimetic appearance of the lure could increase its acceptance by fish. Finally, an experiment involving a mixed society of fish and robots qualified the robotic system to be integrated among a zebrafish shoal and to be able to influence the collective decisions of the fish. These results are very promising for the field of fish-robot interaction studies, as we showed the effect of the robots in long-duration experiments and repetitively, with the same order of response from the animals

    Single Molecule Statistics and the Polynucleotide Unzipping Transition

    Full text link
    We present an extensive theoretical investigation of the mechanical unzipping of double-stranded DNA under the influence of an applied force. In the limit of long polymers, there is a thermodynamic unzipping transition at a critical force value of order 10 pN, with different critical behavior for homopolymers and for random heteropolymers. We extend results on the disorder-averaged behavior of DNA's with random sequences to the more experimentally accessible problem of unzipping a single DNA molecule. As the applied force approaches the critical value, the double-stranded DNA unravels in a series of discrete, sequence-dependent steps that allow it to reach successively deeper energy minima. Plots of extension versus force thus take the striking form of a series of plateaus separated by sharp jumps. Similar qualitative features should reappear in micromanipulation experiments on proteins and on folded RNA molecules. Despite their unusual form, the extension versus force curves for single molecules still reveal remnants of the disorder-averaged critical behavior. Above the transition, the dynamics of the unzipping fork is related to that of a particle diffusing in a random force field; anomalous, disorder-dominated behavior is expected until the applied force exceeds the critical value for unzipping by roughly 5 pN.Comment: 40 pages, 18 figure
    corecore