26 research outputs found
The landscape of selection in 551 esophageal adenocarcinomas defines genomic biomarkers for the clinic
Esophageal adenocarcinoma (EAC) is a poor-prognosis cancer type with rapidly rising incidence. Understanding of the genetic events driving EAC development is limited, and there are few molecular biomarkers for prognostication or therapeutics. Using a cohort of 551 genomically characterized EACs with matched RNA sequencing data, we discovered 77 EAC driver genes and 21 noncoding driver elements. We identified a mean of 4.4 driver events per tumor, which were derived more commonly from mutations than copy number alterations, and compared the prevelence of these mutations to the exome-wide mutational excess calculated using non-synonymous to synonymous mutation ratios (dN/dS). We observed mutual exclusivity or co-occurrence of events within and between several dysregulated EAC pathways, a result suggestive of strong functional relationships. Indicators of poor prognosis (SMAD4 and GATA4) were verified in independent cohorts with significant predictive value. Over 50% of EACs contained sensitizing events for CDK4 and CDK6 inhibitors, which were highly correlated with clinically relevant sensitivity in a panel of EAC cell lines and organoids
The evolution of lung cancer and impact of subclonal selection in TRACERx
Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource
Mixed responses to targeted therapy driven by chromosomal instability through p53 dysfunction and genome doubling
The phenomenon of mixed/heterogenous treatment responses to cancer therapies within an individual patient presents a challenging clinical scenario. Furthermore, the molecular basis of mixed intra-patient tumor responses remains unclear. Here, we show that patients with metastatic lung adenocarcinoma harbouring co-mutations of EGFR and TP53, are more likely to have mixed intra-patient tumor responses to EGFR tyrosine kinase inhibition (TKI), compared to those with an EGFR mutation alone. The combined presence of whole genome doubling (WGD) and TP53 co-mutations leads to increased genome instability and genomic copy number aberrations in genes implicated in EGFR TKI resistance. Using mouse models and an in vitro isogenic p53-mutant model system, we provide evidence that WGD provides diverse routes to drug resistance by increasing the probability of acquiring copy-number gains or losses relative to non-WGD cells. These data provide a molecular basis for mixed tumor responses to targeted therapy, within an individual patient, with implications for therapeutic strategies
Recommended from our members
Genetics and Biomarkers in Barrett's Esophagus and Esophageal Adenocarcinoma
Barrett’s Oesophagus (BE) is the premalignant condition associated with the development of oesophageal adenocarcinoma (OAC). Diagnostically, p53 immunohistochemistry remains the only biomarker recommended clinically to aid histopathological diagnosis. The emerging mutational profile of BE is one of highly heterogeneous lesions at the genomic level with many mutations already occurring in non-dysplastic tissue. As well as point mutations, larger scale copy number changes appear to play a key role in the progression to OAC and clinically applicable assays for the reliable detection of aneuploidy will be important to incorporate into future clinical management of patients. For some patients the transition to malignancy may occur rapidly through a genome doubling event or chromosomal catastrophe, termed chromothripsis, and detecting these patients may prove especially difficult. Given the heterogeneous nature of this disease, sampling methods to overcome inherent bias from endoscopic biopsies coupled with the development of more objective biomarkers than the current reliance on histopathology will be required for risk stratification. The aim of this approach will be to spare low risk patients unnecessary procedures, as well as to provide endoscopic therapy to the patients at highest risk thereby avoiding the burden of incurable metastatic disease
The landscape of selection in 551 esophageal adenocarcinomas defines genomic biomarkers for the clinic
The landscape of selection in 551 Esophageal Adenocarcinomas defines genomic biomarkers for the clinic
AbstractEsophageal Adenocarcinoma (EAC) is a poor prognosis cancer type with rapidly rising incidence. Our understanding of genetic events which drive EAC development is limited and there are few molecular biomarkers for prognostication or therapeutics. We have accumulated a cohort of 551 genomically characterised EACs (73% WGS and 27% WES) with clinical annotation and matched RNA-seq. Using a variety of driver gene detection methods, we discover 77 EAC driver genes (73% novel) and 21 non-coding driver elements (95% novel), and describe mutation and CNV types with specific functional impact. We identify a mean of 4.4 driver events per case derived from both copy number events and mutations. We compare driver mutation rates to the exome-wide mutational excess calculated using Non-synonymous vs Synonymous mutation rates (dNdS). We observe mutual exclusivity or co-occurrence of events within and between a number of EAC pathways (GATA factors, Core Cell cycle genes, TP53 regulators and the SWI/SNF complex) suggestive of important functional relationships. These driver variants correlate with tumour differentiation, sex and prognosis. Poor prognostic indicators (SMAD4, GATA4) are verified in independent cohorts with significant predictive value. Over 50% of EACs contain sensitising events for CDK4/6 inhibitors which are highly correlated with clinically relevant sensitivity in a panel EAC cell lines and organoids.</jats:p
The landscape of selection in 551 esophageal adenocarcinomas defines genomic biomarkers for the clinic
Esophageal adenocarcinoma (EAC) is a poor-prognosis cancer type with rapidly rising incidence. Understanding of the genetic events driving EAC development is limited, and there are few molecular biomarkers for prognostication or therapeutics. Using a cohort of 551 genomically characterized EACs with matched RNA sequencing data, we discovered 77 EAC driver genes and 21 noncoding driver elements. We identified a mean of 4.4 driver events per tumor, which were derived more commonly from mutations than copy number alterations, and compared the prevelence of these mutations to the exome-wide mutational excess calculated using non-synonymous to synonymous mutation ratios (dN/dS). We observed mutual exclusivity or co-occurrence of events within and between several dysregulated EAC pathways, a result suggestive of strong functional relationships. Indicators of poor prognosis (SMAD4 and GATA4) were verified in independent cohorts with significant predictive value. Over 50% of EACs contained sensitizing events for CDK4 and CDK6 inhibitors, which were highly correlated with clinically relevant sensitivity in a panel of EAC cell lines and organoids
The landscape of selection in 551 esophageal adenocarcinomas defines genomic biomarkers for the clinic
Esophageal adenocarcinoma (EAC) is a poor-prognosis cancer type with rapidly rising incidence. Understanding of the genetic events driving EAC development is limited, and there are few molecular biomarkers for prognostication or therapeutics. Using a cohort of 551 genomically characterized EACs with matched RNA sequencing data, we discovered 77 EAC driver genes and 21 noncoding driver elements. We identified a mean of 4.4 driver events per tumor, which were derived more commonly from mutations than copy number alterations, and compared the prevelence of these mutations to the exome-wide mutational excess calculated using non-synonymous to synonymous mutation ratios (dN/dS). We observed mutual exclusivity or co-occurrence of events within and between several dysregulated EAC pathways, a result suggestive of strong functional relationships. Indicators of poor prognosis (SMAD4 and GATA4) were verified in independent cohorts with significant predictive value. Over 50% of EACs contained sensitizing events for CDK4 and CDK6 inhibitors, which were highly correlated with clinically relevant sensitivity in a panel of EAC cell lines and organoids
Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma
Esophageal squamous cell carcinoma (ESCC) is a poor-prognosis cancer type with limited understanding of its molecular etiology. Using 508 ESCC genomes, we identified five novel significantly mutated genes and uncovered mutational signature clusters associated with metastasis and patients’ outcomes. Several functional assays implicated that NFE2L2 may act as a tumor suppressor in ESCC and that mutations in NFE2L2 probably impaired its tumor-suppressive function, or even conferred oncogenic activities. Additionally, we found that the NFE2L2 mutations were significantly associated with worse prognosis of ESCC. We also identified potential noncoding driver mutations including hotspot mutations in the promoter region of SLC35E2 that were correlated with worse survival. Approximately 5.9% and 15.2% of patients had high tumor mutation burden or actionable mutations, respectively, and may benefit from immunotherapy or targeted therapies. We found clinically relevant coding and noncoding genomic alterations and revealed three major subtypes that robustly predicted patients’ outcomes. Collectively, we report the largest dataset of genomic profiling of ESCC useful for developing ESCC-specific biomarkers for diagnosis and treatment. © 2020, Center for Excellence in Molecular Cell Science, CAS
Antibodies against endogenous retroviruses promote lung cancer immunotherapy.
B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response
