697 research outputs found

    Cyclical Quantum Memory for Photonic Qubits

    Get PDF
    We have performed a proof-of-principle experiment in which qubits encoded in the polarization states of single-photons from a parametric down-conversion source were coherently stored and read-out from a quantum memory device. The memory device utilized a simple free-space storage loop, providing a cyclical read-out that could be synchronized with the cycle time of a quantum computer. The coherence of the photonic qubits was maintained during switching operations by using a high-speed polarizing Sagnac interferometer switch.Comment: 4 pages, 5 figure

    Dispersion cancellation and non-classical noise reduction for large photon-number states

    Full text link
    Nonlocal dispersion cancellation is generalized to frequency-entangled states with large photon number N. We show that the same entangled states can simultaneously exhibit a factor of 1/sqrt(N) reduction in noise below the classical shot noise limit in precise timing applications, as was previously suggested by Giovannetti, Lloyd and Maccone (Nature v412 (2001) p417). The quantum-mechanical noise reduction can be destroyed by a relatively small amount of uncompensated dispersion and entangled states of this kind have larger timing uncertainties than the corresponding classical states in that case. Similar results were obtained for correlated states, anti-correlated states, and frequency-entangled coherent states, which shows that these effects are a fundamental result of entanglement.Comment: 8 pages, 4 figures, REVTeX 4, submitted to Phys. Rev. A, v2: minor changes in response to referee report, fig3 fixe

    Experimental Demonstration of a Quantum Circuit using Linear Optics Gates

    Full text link
    One of the main advantages of an optical approach to quantum computing is the fact that optical fibers can be used to connect the logic and memory devices to form useful circuits, in analogy with the wires of a conventional computer. Here we describe an experimental demonstration of a simple quantum circuit of that kind in which two probabilistic exclusive-OR (XOR) logic gates were combined to calculate the parity of three input qubits.Comment: v2 is final PRA versio

    Generation of Entanglement Outside of the Light Cone

    Full text link
    The Feynman propagator has nonzero values outside of the forward light cone. That does not allow messages to be transmitted faster than the speed of light, but it is shown here that it does allow entanglement and mutual information to be generated at space-like separated points. These effects can be interpreted as being due to the propagation of virtual photons outside of the light cone or as a transfer of pre-existing entanglement from the quantum vacuum. The differences between these two interpretations are discussed.Comment: 25 pages, 7 figures. Additional references and figur

    Heralded Two-Photon Entanglement from Probabilistic Quantum Logic Operations on Multiple Parametric Down-Conversion Sources

    Get PDF
    An ideal controlled-NOT gate followed by projective measurements can be used to identify specific Bell states of its two input qubits. When the input qubits are each members of independent Bell states, these projective measurements can be used to swap the post-selected entanglement onto the remaining two qubits. Here we apply this strategy to produce heralded two-photon polarization entanglement using Bell states that originate from independent parametric down-conversion sources, and a particular probabilistic controlled-NOT gate that is constructed from linear optical elements. The resulting implementation is closely related to an earlier proposal by Sliwa and Banaszek [quant-ph/0207117], and can be intuitively understood in terms of familiar quantum information protocols. The possibility of producing a ``pseudo-demand'' source of two-photon entanglement by storing and releasing these heralded pairs from independent cyclical quantum memory devices is also discussed.Comment: 5 pages, 4 figures; submitted to IEEE Journal of Selected Topics in Quantum Electronics, special issue on "Quantum Internet Technologies

    Probabilistic Quantum Encoder for Single-Photon Qubits

    Full text link
    We describe an experiment in which a physical qubit represented by the polarization state of a single-photon was probabilistically encoded in the logical state of two photons. The experiment relied on linear optics, post-selection, and three-photon interference effects produced by a parametric down-conversion photon pair and a weak coherent state. An interesting consequence of the encoding operation was the ability to observe entangled three-photon Greenberger-Horne-Zeilinger states.Comment: 4 pages, 4 figures; submitted to Phys. Rev.

    Optimization of Bell's Inequality Violation For Continuous Variable Systems

    Full text link
    Two mode squeezed vacuum states allow Bell's inequality violation (BIQV) for all non-vanishing squeezing parameter (ζ)(\zeta). Maximal violation occurs at ζ\zeta \to \infty when the parity of either component averages to zero. For a given entangled {\it two spin} system BIQV is optimized via orientations of the operators entering the Bell operator (cf. S. L. Braunstein, A. Mann and M. Revzen: Phys. Rev. Lett. {\bf68}, 3259 (1992)). We show that for finite ζ\zeta in continuous variable systems (and in general whenever the dimensionality of the subsystems is greater than 2) additional parameters are present for optimizing BIQV. Thus the expectation value of the Bell operator depends, in addition to the orientation parameters, on configuration parameters. Optimization of these configurational parameters leads to a unique maximal BIQV that depends only on ζ.\zeta. The configurational parameter variation is used to show that BIQV relation to entanglement is, even for pure state, not monotonic.Comment: An example added; shows that the amount of Bell's inequality violation as a measure of entanglement is doubtfu

    Non-realism : deep thought or a soft option ?

    Full text link
    The claim that the observation of a violation of a Bell inequality leads to an alleged alternative between nonlocality and non-realism is annoying because of the vagueness of the second term.Comment: 5 page
    corecore