56 research outputs found
Preparations of Meiotic Pachytene Chromosomes and Extended DNA Fibers from Cotton Suitable for Fluorescence In Situ Hybridization
Fluorescence in situ hybridization (FISH) has become one of the most important techniques applied in plant molecular cytogenetics. However, the application of this technique in cotton has lagged behind because of difficulties in chromosome preparation. The focus of this article was FISH performed not only on cotton pachytene chromosomes, but also on cotton extended DNA fibers. The cotton pollen mother cells (PMCs) instead of buds or anthers were directly digested in enzyme to completely breakdown the cell wall. Before the routine acetic acid treatment, PMCs were incubated in acetic acid and enzyme mixture to remove the cytoplasm and clear the background. The method of ice-cold Carnoy's solution spreading chromosome was adopted instead of nitrogen removed method to avoid chromosomes losing and fully stretch chromosome. With the above-improved steps, the high-quality well-differentiated pachytene chromosomes with clear background were obtained. FISH results demonstrated that a mature protocol of cotton pachytene chromosomes preparation was presented. Intact and no debris cotton nuclei were obtained by chopping from etiolation cotyledons instead of the conventional liquid nitrogen grinding method. After incubating the nuclei with nucleus lysis buffer on slide, the parallel and clear background DNA fibers were acquired along the slide. This method overcomes the twist, accumulation and fracture of DNA fibers compared with other methods. The entire process of DNA fibers preparation requires only 30 min, in contrast, it takes 3 h with routine nitrogen grinding method. The poisonous mercaptoethanol in nucleus lysis buffer is replaced by nonpoisonous dithiothreitol. PVP40 in nucleus isolation buffer is used to prevent oxidation. The probability of success in isolating nuclei for DNA fiber preparation is almost 100% tested with this method in cotton. So a rapid, safe, and efficient method for the preparation of cotton extended DNA fibers suitable for FISH was established
Postembryonic establishment of megabase-scale gene silencing in nucleolar dominance
Nucleolar dominance is an epigenetic phenomenon in plant and animal genetic hybrids that describes the expression of 45S
ribosomal RNA genes (rRNA genes) inherited from only one progenitor due to the silencing of the other progenitor’s rRNA genes.
rRNA genes are tandemly arrayed at nucleolus organizer regions (NORs) that span millions of basepairs, thus gene silencing in
nucleolar dominance occurs on a scale second only to X-chromosome inactivation in female mammals. In Arabidopsis suecica, the
allotetraploid hybrid of A. thaliana and A. arenosa, theA. thaliana –derived rRNA genes are subjected to nucleolar dominance and
are silenced via repressive chromatin modifications. However, the developmental stage at which nucleolar dominance is
established in A. suecica is currently unknown. We show that nucleolar dominance is not apparent in seedling cotyledons formed
during embryogenesis but becomes progressively established during early postembryonic development in tissues derived from
both the shoot and root apical meristems. The progressive silencing of A. thaliana rRNA genes correlates with the transition of A.
thaliana NORs from a decondensed euchromatic state associated with histone H3 that is trimethylated on lysine 4 (H3K4me3) to
a highly condensed heterochromatic state in which the NORs are associated with H3K9me2 and 5-methylcytosine-enriched
chromocenters. In RNAi-lines in which the histone deacetylases HDA6 and HDT1 are knocked down, the developmentally
regulated condensation and inactivation of A. thaliana NORs is disrupted. Collectively, these data demonstrate that HDA6 and
HDT1 function in the postembryonic establishment of nucleolar dominance, a process which recurs in each generatio
Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology
A cytogenetic map has been developed for diploid potato (Solanum tuberosum), in which the arms of the 12 potato bivalents can be identified in pachytene complements using multicolor fluorescence in situ hybridization (FISH) with a set of 60 genetically anchored bacterial artificial chromosome (BAC) clones from the RHPOTKEY BAC library. This diagnostic set of selected BACs (five per chromosome) hybridizes to euchromatic regions and corresponds to well-defined loci in the ultradense genetic map, and with these probes a new detailed and reliable pachytene karyotype could be established. Chromosome size has been estimated both from microscopic length measurements and from 4′,6-diamidino-2-phenylindole fluorescence-based DNA content measurements. In both approaches, chromosome 1 is the largest (100–115 Mb) and chromosome 11 the smallest (49–53 Mb). Detailed measurements of mega-base-pair to micrometer ratios have been obtained for chromosome 5, with average values of 1.07 Mb/μm for euchromatin and 3.67 Mb/μm for heterochromatin. In addition, our FISH results helped to solve two discrepancies in the potato genetic map related to chromosomes 8 and 12. Finally, we discuss the significance of the potato cytogenetic map for extended FISH studies in potato and related Solanaceae, which will be especially beneficial for the potato genome-sequencing project
Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences
The tobamovirus resistance gene L3 of Capsicum chinense was mapped using an intra-specific F2 population (2,016 individuals) of Capsicum annuum cultivars, into one of which had been introduced the C. chinenseL3 gene, and an inter-specific F2 population (3,391 individuals) between C. chinense and Capsicum frutescence. Analysis of a BAC library with an AFLP marker closely linked to L3-resistance revealed the presence of homologs of the tomato disease resistance gene I2. Partial or full-length coding sequences were cloned by degenerate PCR from 35 different pepper I2 homologs and 17 genetic markers were generated in the inter-specific combination. The L3 gene was mapped between I2 homolog marker IH1-04 and BAC-end marker 189D23M, and located within a region encompassing two different BAC contigs consisting of four and one clones, respectively. DNA fiber FISH analysis revealed that these two contigs are separated from each other by about 30 kb. DNA fiber FISH results and Southern blotting of the BAC clones suggested that the L3 locus-containing region is rich in highly repetitive sequences. Southern blot analysis indicated that the two BAC contigs contain more than ten copies of the I2 homologs. In contrast to the inter-specific F2 population, no recombinant progeny were identified to have a crossover point within two BAC contigs consisting of seven and two clones in the intra-specific F2 population. Moreover, distribution of the crossover points differed between the two populations, suggesting linkage disequilibrium in the region containing the L locus
Studying physical chromatin interactions in plants using Chromosome Conformation Capture (3C)
2,4-Dichlorophenoxyacetic acid affects mode and frequency of regeneration from hypocotyl protoplasts ofBrassica oleracea
Quantitative Fluorescence In Situ Hybridization Detection of Plant mRNAs with Single-Molecule Resolution
- …
