1,757 research outputs found
Precision Masses of the low-mass binary system GJ 623
We have used Aperture Masking Interferometry and Adaptive Optics (AO) at the
Palomar 200'' to obtain precise mass measurements of the binary M dwarf GJ 623.
AO observations spread over 3 years combined with a decade of radial velocity
measurements constrain all orbital parameters of the GJ 623 binary system
accurately enough to critically challenge the models. The dynamical masses
measured are m_{1}=0.371\pm0.015 M_{\sun} (4%) and m_{2}=0.115\pm0.0023
M_{\sun} (2%) for the primary and the secondary respectively. Models are not
consistent with color and mass, requiring very low metallicities.Comment: 7 pages, 5 figures. Accepted for Ap
The Approach to Ergodicity in Monte Carlo Simulations
The approach to the ergodic limit in Monte Carlo simulations is studied using
both analytic and numerical methods. With the help of a stochastic model, a
metric is defined that enables the examination of a simulation in both the
ergodic and non-ergodic regimes. In the non-ergodic regime, the model implies
how the simulation is expected to approach ergodic behavior analytically, and
the analytically inferred decay law of the metric allows the monitoring of the
onset of ergodic behavior. The metric is related to previously defined measures
developed for molecular dynamics simulations, and the metric enables the
comparison of the relative efficiencies of different Monte Carlo schemes.
Applications to Lennard-Jones 13-particle clusters are shown to match the model
for Metropolis, J-walking and parallel tempering based approaches. The relative
efficiencies of these three Monte Carlo approaches are compared, and the decay
law is shown to be useful in determining needed high temperature parameters in
parallel tempering and J-walking studies of atomic clusters.Comment: 17 Pages, 7 Figure
Relevance of baseline hard proton-proton spectra for high-energy nucleus-nucleus physics
We discuss three different cases of hard inclusive spectra in proton-proton
collisions: high single hadron production at 20 GeV and
at = 62.4 GeV, and direct photon production at = 200 GeV;
with regard to their relevance for the search of Quark Gluon Plasma signals in
A+A collisions at SPS and RHIC energies.Comment: Proceeds. Hot Quarks 2004 Int. Workshop on the Physics of
Ultrarelativistic Nucleus-Nucleus Collisions. 26 pages. 26 figs. [minor
corrs., refs. added
Inherent-Structure Dynamics and Diffusion in Liquids
The self-diffusion constant D is expressed in terms of transitions among the
local minima of the potential (inherent structure, IS) and their correlations.
The formulae are evaluated and tested against simulation in the supercooled,
unit-density Lennard-Jones liquid. The approximation of uncorrelated
IS-transition (IST) vectors, D_{0}, greatly exceeds D in the upper temperature
range, but merges with simulation at reduced T ~ 0.50. Since uncorrelated IST
are associated with a hopping mechanism, the condition D ~ D_{0} provides a new
way to identify the crossover to hopping. The results suggest that theories of
diffusion in deeply supercooled liquids may be based on weakly correlated IST.Comment: submitted to PR
The Potential Energy Landscape and Mechanisms of Diffusion in Liquids
The mechanism of diffusion in supercooled liquids is investigated from the
potential energy landscape point of view, with emphasis on the crossover from
high- to low-T dynamics. Molecular dynamics simulations with a time dependent
mapping to the associated local mininum or inherent structure (IS) are
performed on unit-density Lennard-Jones (LJ). New dynamical quantities
introduced include r2_{is}(t), the mean-square displacement (MSD) within a
basin of attraction of an IS, R2(t), the MSD of the IS itself, and g_{loc}(t)
the mean waiting time in a cooperative region. At intermediate T, r2_{is}(t)
posesses an interval of linear t-dependence allowing calculation of an
intrabasin diffusion constant D_{is}. Near T_{c} diffusion is intrabasin
dominated with D = D_{is}. Below T_{c} the local waiting time tau_{loc} exceeds
the time, tau_{pl}, needed for the system to explore the basin, indicating the
action of barriers. The distinction between motion among the IS below T_{c} and
saddle, or border dynamics above T_{c} is discussed.Comment: submitted to pr
The Vector Probe in Heavy-Ion Reactions
We review essential elements in using the channel as a probe for
hot and dense matter as produced in (ultra-) relativistic collisions of heavy
nuclei. The uniqueness of the vector channel resides in the fact that it
directly couples to photons, both real and virtual (dileptons), enabling the
study of thermal radiation and in-medium effects on both light () and heavy () vector mesons. We emphasize the importance
of interrelations between photons and dileptons, and characterize relevant
energy/mass regimes through connections to Quark-Gluon-Plasma emission and
chiral symmetry restoration. Based on critical analysis of our current
understanding of data from fixed-target energies, we identify open key
questions to be addressed.Comment: Invited Talk at the Hot Quarks 2004 Workshop, July 18-24, 2004 (Taos
Valley, NM, USA), 15 pages latex incl 14 figs and iop style files, to appear
in the proceeding
Measurements of double-helicity asymmetries in inclusive production in longitudinally polarized collisions at GeV
We report the double helicity asymmetry, , in inclusive
production at forward rapidity as a function of transverse momentum
and rapidity . The data analyzed were taken during
GeV longitudinally polarized collisions at the Relativistic Heavy Ion
Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision
energy, particles are predominantly produced through gluon-gluon
scatterings, thus is sensitive to the gluon polarization
inside the proton. We measured by detecting the decay
daughter muon pairs within the PHENIX muon spectrometers in the
rapidity range . In this kinematic range, we measured the
to be ~(stat)~~(syst). The
can be expressed to be proportional to the product of the
gluon polarization distributions at two distinct ranges of Bjorken : one at
moderate range where recent RHIC data of jet and
double helicity spin asymmetries have shown evidence for significant gluon
polarization, and the other one covering the poorly known small- region . Thus our new results could be used to further
constrain the gluon polarization for .Comment: 335 authors, 10 pages, 4 figures, 3 tables, 2013 data. Version
accepted for publication by Phys. Rev. D. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Centrality categorization for R_{p(d)+A} in high-energy collisions
High-energy proton- and deuteron-nucleus collisions provide an excellent tool
for studying a wide array of physics effects, including modifications of parton
distribution functions in nuclei, gluon saturation, and color neutralization
and hadronization in a nuclear environment, among others. All of these effects
are expected to have a significant dependence on the size of the nuclear target
and the impact parameter of the collision, also known as the collision
centrality. In this article, we detail a method for determining centrality
classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity
(i.e., the nucleus-going direction) and for determining systematic
uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we
find that the connection to geometry is confirmed by measuring the fraction of
events in which a neutron from the deuteron does not interact with the nucleus.
As an application, we consider the nuclear modification factors R_{p(d)+A}, for
which there is a potential bias in the measured centrality dependent yields due
to auto-correlations between the process of interest and the backward rapidity
multiplicity. We determine the bias correction factor within this framework.
This method is further tested using the HIJING Monte Carlo generator. We find
that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are
small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for
p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an
order of magnitude larger and strongly p_T dependent, likely due to the larger
effect of multi-parton interactions.Comment: 375 authors, 18 pages, 16 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
