413 research outputs found

    Coupled backward- and forward-propagating solitons in a composite right/left-handed transmission line

    Get PDF
    We study the coupling between backward- and forward-propagating wave modes, with the same group velocity, in a composite right/left-handed nonlinear transmission line. Using an asymptotic multiscale expansion technique, we derive a system of two coupled nonlinear Schr{\"o}dinger equations governing the evolution of the envelopes of these modes. We show that this system supports a variety of backward- and forward propagating vector solitons, of the bright-bright, bright-dark and dark-bright type. Performing systematic numerical simulations in the framework of the original lattice that models the transmission line, we study the propagation properties of the derived vector soliton solutions. We show that all types of the predicted solitons exist, but differ on their robustness: only bright-bright solitons propagate undistorted for long times, while the other types are less robust, featuring shorter lifetimes. In all cases, our analytical predictions are in a very good agreement with the results of the simulations, at least up to times of the order of the solitons' lifetimes

    PT-symmetric lattices with spatially extended gain/loss are generically unstable

    Full text link
    We illustrate, through a series of prototypical examples, that linear parity-time (PT) symmetric lattices with extended gain/loss profiles are generically unstable, for any non-zero value of the gain/loss coefficient. Our examples include a parabolic real potential with a linear imaginary part and the cases of no real and constant or linear imaginary potentials. On the other hand, this instability can be avoided and the spectrum can be real for localized or compact PT-symmetric potentials. The linear lattices are analyzed through discrete Fourier transform techniques complemented by numerical computations.Comment: 6 pages, 4 figure

    X,Y,Z-Waves: Extended Structures in Nonlinear Lattices

    Get PDF
    Motivated by recent experimental and theoretical results on optical X-waves, we propose a new type of waveforms in 2D and 3D discrete media -- multi-legged extended nonlinear structures (ENS), built as arrays of lattice solitons (tiles or stones, in the 2D and 3D cases, respectively). First, we study the stability of the tiles and stones analytically, and then extend them numerically to complete ENS forms for both 2D and 3D lattices. The predicted patterns are relevant to a variety of physical settings, such as Bose-Einstein condensates in deep optical lattices, lattices built of microresonators, photorefractive crystals with optically induced lattices (in the 2D case) and others.Comment: 4 pages, 4 figure

    Beating dark-dark solitons and Zitterbewegung in spin-orbit coupled Bose-Einstein condensates

    Full text link
    We present families of beating dark-dark solitons in spin-orbit (SO) coupled Bose-Einstein condensates. These families consist of solitons residing simultaneously in the two bands of the energy spectrum. The soliton components are characterized by two different spatial and temporal scales, which are identified by a multiscale expansion method. The solitons are "beating" ones, as they perform density oscillations with a characteristic frequency, relevant to Zitterbewegung (ZB). We find that spin oscillations may occur, depending on the parity of each soliton branch, which consequently lead to ZB oscillations of the beating dark solitons. Analytical results are corroborated by numerical simulations, illustrating the robustness of the solitons.Comment: 6 pages, 3 figure

    Perturbations of Dark Solitons

    Full text link
    A method for approximating dark soliton solutions of the nonlinear Schrodinger equation under the influence of perturbations is presented. The problem is broken into an inner region, where core of the soliton resides, and an outer region, which evolves independently of the soliton. It is shown that a shelf develops around the soliton which propagates with speed determined by the background intensity. Integral relations obtained from the conservation laws of the nonlinear Schrodinger equation are used to approximate the shape of the shelf. The analysis is developed for both constant and slowly evolving backgrounds. A number of problems are investigated including linear and nonlinear damping type perturbations

    Solitons and their ghosts in PT-symmetric systems with defocusing nonlinearities

    Full text link
    We examine a prototypical nonlinear Schr\"odinger model bearing a defocusing nonlinearity and Parity-Time (PT) symmetry. For such a model, the solutions can be identified numerically and characterized in the perturbative limit of small gain/loss. There we find two fundamental phenomena. First, the dark solitons that persist in the presence of the PT-symmetric potential are destabilized via a symmetry breaking (pitchfork) bifurcation. Second, the ground state and the dark soliton die hand-in-hand in a saddle-center bifurcation (a nonlinear analogue of the PT-phase transition) at a second critical value of the gain/loss parameter. The daughter states arising from the pitchfork are identified as "ghost states", which are not exact solutions of the original system, yet they play a critical role in the system's dynamics. A similar phenomenology is also pairwise identified for higher excited states, with e.g. the two-soliton structure bearing similar characteristics to the zero-soliton one, and the three-soliton state having the same pitchfork destabilization mechanism and saddle-center collision (in this case with the two-soliton) as the one-dark soliton. All of the above notions are generalized in two-dimensional settings for vortices, where the topological charge enforces the destabilization of a two-vortex state and the collision of a no-vortex state with a two-vortex one, of a one-vortex state with a three-vortex one, and so on. The dynamical manifestation of the instabilities mentioned above is examined through direct numerical simulations.Comment: 17 pages, 16 figure
    corecore