166 research outputs found
A proposed framework of an interactive semi-virtual environment for enhanced education of children with autism spectrum disorders
Education of people with special needs has recently been considered as a key element in the field of medical education. Recent development in the area of information and communication technologies may enable development of collaborative interactive environments which facilitate early stage education and provide specialists with robust tools indicating the person's autism spectrum disorder level. Towards the goal of establishing an enhanced learning environment for children with autism this paper attempts to provide a framework of a semi-controlled real-world environment used for the daily education of an autistic person according to the scenarios selected by the specialists. The proposed framework employs both real-world objects and virtual environments equipped with humanoids able to provide emotional feedback and to demonstrate empathy. Potential examples and usage scenarios for such environments are also described
The brain's response to pleasant touch: an EEG investigation of tactile caressing
Somatosensation as a proximal sense can have a strong impact on our attitude toward physical objects and other human beings. However, relatively little is known about how hedonic valence of touch is processed at the cortical level. Here we investigated the electrophysiological correlates of affective tactile sensation during caressing of the right forearm with pleasant and unpleasant textile fabrics. We show dissociation between more physically driven differential brain responses to the different fabrics in early somatosensory cortex - the well-known mu-suppression (10-20 Hz) - and a beta-band response (25-30 Hz) in presumably higher-order somatosensory areas in the right hemisphere that correlated well with the subjective valence of tactile caressing. Importantly, when using single trial classification techniques, beta-power significantly distinguished between pleasant and unpleasant stimulation on a single trial basis with high accuracy. Our results therefore suggest a dissociation of the sensory and affective aspects of touch in the somatosensory system and may provide features that may be used for single trial decoding of affective mental states from simple electroencephalographic measurements
Editorial: Assessing sleep neuroplasticity in pathological conditions and in extreme environments through neurophysiological and multi-faceted daily lifestyle patterns
Recommended from our members
Meta-KANSEI modeling with Valence-Arousal fMRI dataset of brain
Background: Traditional KANSEI methodology is an important tool in the field of psychology to comprehend the concepts and meanings; it mainly focusses on semantic differential methods. Valence-Arousal is regarded as a reflection of the KANSEI adjectives, which is the core concept in the theory of effective dimensions for brain recognition. From previous studies, it has been found that brain fMRI datasets can contain significant information related to Valence and Arousal. Methods: In this current work, a Valence-Arousal based meta-KANSEI modeling method is proposed to improve the traditional KANSEI presentation. Functional Magnetic Resonance Imaging (fMRI) was used to acquire the response dataset of Valence-Arousal of the brain in the amygdala and orbital frontal cortex respectively. In order to validate the feasibility of the proposed modeling method, the dataset was processed under dimension reduction by using Kernel Density Estimation (KDE) based segmentation and Mean Shift (MS) clustering. Furthermore, Affective Norm English Words (ANEW) by IAPS (International Affective Picture System) were used for comparison and analysis. The data sets from fMRI and ANEW under four KANSEI adjectives of angry, happy, sad and pleasant were processed by the Fuzzy C-Means (FCM) algorithm. Finally, a defined distance based on similarity computing was adopted for these two data sets. Results: The results illustrate that the proposed model is feasible and has better stability per the normal distribution plotting of the distance. The effectiveness of the experimental methods proposed in the current work was higher than in the literature. Conclusions: mean shift can be used to cluster and central points based meta-KANSEI model combining with the advantages of a variety of existing intelligent processing methods are expected to shift the KANSEI Engineering (KE) research into the medical imaging field
Information and communication technologies (ICT) for enhanced education of children with autism spectrum disorders
Recent developments in the area of information and communication technologies for people with special needs has led to significant changes in the way specialists and educators can address the daily impairments posed by people with abnormal behaviour, such as autism. Computer based educative methods are increasingly being considered as a key tool for educating people with autistic spectrum disorders (ASDs). Recent research has demonstrated that persons with autism, especially children, enjoy interacting with computers particularly as they are free from the expectations and judgments that make social interaction problematic. Virtual Environments (VEs), usually accompanied by three dimensional (3D) humanoid characters have been proven to play an essential role in special education and social interventions. Emotionally expressive avatars (a computer user’s representation of himself/ herself or alter ego), can advance the quality of tutor-learner interaction, with unobtrusive wireless sensors integrating an autistic person’s feedback and reaction. In this paper we review some developments in information and communication technology (ICT) for managing children with ASDs and also describe the approach we are taking to developing a platform to enhance and mediate the teacher-child educational process
A Framework Combining Delta Event-Related Oscillations (EROs) and Synchronisation Effects (ERD/ERS) to Study Emotional Processing
Event-Related Potentials (ERPs) or Event-Related
Oscillations (EROs) have been widely used to
study emotional processing, mainly on the theta and gamma
frequency bands. However, the role of the slow
(delta) waves has been largely ignored. The aim
of this study is to provide a framework that
combines EROs with Event-Related
Desynchronization (ERD)/Event-Related
Synchronization (ERS), and peak amplitude
analysis of delta activity, evoked by the
passive viewing of emotionally evocative
pictures. Results showed that this kind of
approach is sensitive to the effects of gender,
valence, and arousal, as well as, the study of
interhemispherical disparity, as the two-brain
hemispheres interplay roles in the detailed
discrimination of gender. Valence effects are
recovered in both the central electrodes as well
as in the hemisphere interactions. These
findings suggest that the temporal patterns of
delta activity and the alterations of delta
energy may contribute to the study of emotional
processing. Finally the results depict the
improved sensitivity of the proposed framework
in comparison to the traditional ERP techniques,
thereby delineating the need for further
development of new methodologies to study slow
brain frequencies
Rehabilitation assisted by Space technology—A SAHC approach in immobilized patients—A case of stroke
Introduction: The idea behind the presentation of this case relates to utilizing space technology in earth applications with mutual benefit for both patients confined to bed and astronauts. Deconditioning and the progressiveness of skeletal muscle loss in the absence of adequate gravity stimulus have been of physiological concern. A robust countermeasure to muscle disuse is still a challenge for both immobilized patients and astronauts in long duration space missions. Researchers in the space medicine field concluded that artificial gravity (AG) produced by short-radius centrifugation on a passive movement therapy device, combined with exercise, has been a robust multi-system countermeasure as it re-introduces an acceleration field and gravity load.Methods: A short-arm human centrifuge (SAHC) alone or combined with exercise was evaluated as a novel, artificial gravity device for an effective rehabilitation strategy in the case of a stroke patient with disability. The results reveal valuable information on an individualized rehabilitation strategy against physiological deconditioning. A 73-year-old woman was suddenly unable to speak, follow directions or move her left arm and leg. She could not walk, and self-care tasks required maximal assistance. Her condition was getting worse over the years, also she was receiving conventional rehabilitation treatment. Intermittent short-arm human centrifuge individualized protocols were applied for 5 months, three times a week, 60 treatments in total.Results: It resulted in significant improvement in her gait, decreased atrophy with less spasticity on the left body side, and ability to walk at least 100 m with a cane. Balance and muscle strength were improved significantly. Cardiovascular parameters improved responding to adaptations to aerobic exercise. Electroencephalography (EEG) showed brain reorganization/plasticity evidenced through functional connectivity alterations and activation in the cortical regions, especially of the precentral and postcentral gyrus. Stroke immobility-related disability was also improved.Discussion: These alterations were attributed to the short-arm human centrifuge intervention. This case study provides novel evidence supporting the use of the short-arm human centrifuge as a promising therapeutic strategy in patients with restricted mobility, with application to astronauts with long-term muscle disuse in space
Towards a hybrid approach to unveil the Chimaira of neurosciences : philosophy, aperiodic activity and the neural correlates of consciousness
Contemporary theories of consciousness, although very efficient in postulating testable hypotheses, seem to either neglect its relational aspect or to have a profound difficulty in operationalizing this aspect in a measurable manner. We further argue that the analysis of periodic brain activity is inadequate to reveal consciousness’s subjective facet. This creates an important epistemic gap in the quest for the neural correlates of consciousness. We suggest a possible solution to bridge this gap, by analysing aperiodic brain activity. We further argue for the imperative need to inform neuroscientific theories of consciousness with relevant philosophical endeavours, in an effort to define, and therefore operationalise, consciousness thoroughly
EEG Network Analysis in Epilepsy with Generalized Tonic–Clonic Seizures Alone
Many contradictory theories regarding epileptogenesis in idiopathic generalized epilepsy have been proposed. This study aims to define the network that takes part in the formation of the spike-wave discharges in patients with generalized tonic–clonic seizures alone (GTCSa) and elucidate the network characteristics. Furthermore, we intend to define the most influential brain areas and clarify the connectivity pattern among them. The data were collected from 23 patients with GTCSa utilizing low-density electroencephalogram (EEG). The source localization of generalized spike-wave discharges (GSWDs) was conducted using the Standardized low-resolution brain electromagnetic tomography (sLORETA) methodology. Cortical connectivity was calculated utilizing the imaginary part of coherence. The network characteristics were investigated through small-world propensity and the integrated value of influence (IVI). Source localization analysis estimated that most sources of GSWDs were in the superior frontal gyrus and anterior cingulate. Graph theory analysis revealed that epileptic sources created a network that tended to be regularized during generalized spike-wave activity. The IVI analysis concluded that the most influential nodes were the left insular gyrus and the left inferior parietal gyrus at 3 and 4 Hz, respectively. In conclusion, some nodes acted mainly as generators of GSWDs and others as influential ones across the whole network
- …
