2,257 research outputs found
Angular Dependence of Highly Nonlinear Pulse Splitting in a Two Dimensional Granular Network
We investigate experimentally and numerically the
propagation of highly nonlinear signals in a branched two-dimensional
granular system composed by chains of uniform
spherical beads. The system consists of a Y-shaped guide with
various branch angles in which stainless steel spheres are
arranged. We study the dynamic behavior of a solitary pulse
crossing the bifurcated interface, and splitting between the two
branches. We report for the first time the dependence of the
split pulses' speed on the branch angles. Numerical simulations
based on Hertzian interaction between the particles are found in
agreement with the experimental data
Highly nonlinear pulse splitting and recombination in a two-dimensional granular network
The propagation of highly nonlinear signals in a branched two-dimensional granular system was investigated experimentally and numerically for a system composed of chains of spherical beads of different materials. The system studied consists of a double Y-shaped guide in which high- and low-modulus/mass chains of spheres are arranged in various geometries. We observed the transformation of a single or a train of solitary pulses crossing the interface between branches. We report fast splitting of the initial pulse, rapid chaotization of the signal and impulse redirection and bending. Pulse and energy trapping was also observed in the branches. Numerical analysis based on Hertzian interaction between the particles and the side walls of the guide was found in agreement with the experimental data, except for nonsymmetric arrangements of particles excited by a large mass striker
Assembly of Influenza Hemagglutinin Fusion Peptides in a Phospholipid Bilayer by Coarse-grained Computer Simulations
Membrane fusion is critical to eukaryotic cellular function and crucial to the entry of enveloped viruses such as influenza and human immunodeficiency virus. Influenza viral entry in the host cell is mediated by a 20-23 amino acid long sequence, called the fusion peptide (FP). Recently, possible structures for the fusion peptide (ranging from an inverted V shaped α-helical structure to an α-helical hairpin, or to a complete α-helix) and their implication in the membrane fusion initiation have been proposed. Despite the large number of studies devoted to the structure of the FP, the mechanism of action of this peptide remains unclear with several mechanisms having been suggested, including the induction of local disorder, promoting membrane curvature, and/or altering local membrane composition. In recent years, several research groups have employed atomistic and/or coarse-grained molecular dynamics (MD) simulations to investigate the matter. In all previous works, the behavior of a single FP monomer was studied, while in this manuscript, we use a simplified model of a tripeptide (TP) monomer of FP (TFP) instead of a single FP monomer because each Influenza Hemagglutinin contains three FP molecules in the biological system. In this manuscript we report findings targeted at understanding the fusogenic properties and the collective behavior of these trimers of FP peptides on a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine model membrane. Here we show how the TFP monomers self-assemble into differently sized oligomers in the presence of the membrane. We measure the perturbation to the structure of the phospholipid membrane caused by the presence of these TFP oligomers. Our work (i) shows how self-assembly of TFP in the presence of the membrane induces non negligible deformation to the membrane and (ii) could be a useful starting point to stimulate discussion and further work targeted to fusion pore formation.</p
A low H I column density filament in NGC 2403 : signature of interaction or accretion
Date of acceptance: 12/07/2014Observed H i accretion around nearby galaxies can only account for a fraction of the gas supply needed to sustain the currently observed star formation rates. It is possible that additional accretion occurs in the form of low column density cold flows, as predicted by numerical simulations of galaxy formation. To constrain the presence and properties of such flows, we present deep H i observations obtained with the NRAO Green Bank Telescope of an area measuring 4° × 4° around NGC 2403. These observations, with a 5σ detection limit of 2.4 × 1018 cm-2 over a 20 km s-1 linewidth, reveal a low column density, extended cloud outside the main H i disk, about 17′ (~ 16 kpc or ~ 2 R25) to the NW of the center of the galaxy. The total H i mass of the cloud is 6.3 × 106 M⊙, or 0.15 percent of the total H i mass of NGC 2403. The cloud is associated with an 8 kpc anomalous-velocity H i filament in the inner disk, that was previously observed in deep VLA observations. We discuss several scenarios for the origin of the cloud, and conclude that it is either accreting from the intergalactic medium, or is the result of a minor interaction with a neigboring dwarf galaxyPeer reviewe
Pulse propagation in decorated granular chains: An analytical approach
We study pulse propagation in one-dimensional chains of spherical granules
decorated with small grains placed between large granules. The effect of the
small granules can be captured by replacing the decorated chains by undecorated
chains of large granules of appropriately renormalized mass and effective
interaction between the large granules. This allows us to obtain simple
analytic expressions for the pulse propagation properties using a
generalization of the binary collision approximation introduced in our earlier
work [Phys. Rev. E in print (2009); Phys. Rev. E {\bf 69}, 037601 (2004)]Comment: 10 pages and 12 figure
High-Velocity Clouds in the Nearby Spiral Galaxy M 83
We present deep HI 21-cm and optical observations of the face-on spiral
galaxy M 83 obtained as part of a project to search for high-velocity clouds
(HVCs) in nearby galaxies. Anomalous-velocity neutral gas is detected toward M
83, with 5.6x10^7 Msolar of HI contained in a disk rotating 40-50 km/s more
slowly in projection than the bulk of the gas. We interpret this as a
vertically extended thick disk of neutral material, containing 5.5% of the
total HI within the central 8 kpc. Using an automated source detection
algorithm to search for small-scale HI emission features, we find eight
distinct, anomalous-velocity HI clouds with masses ranging from 7x10^5 to
1.5x10^7 Msolar and velocities differing by up to 200 km/s compared to the HI
disk. Large on-disk structures are coincident with the optical spiral arms,
while unresolved off-disk clouds contain no diffuse optical emission down to a
limit of 27 r' mag per square arcsec. The diversity of the thick HI disk and
larger clouds suggests the influence of multiple formation mechanisms, with a
galactic fountain responsible for the slowly-rotating disk and on-disk discrete
clouds, and tidal effects responsible for off-disk cloud production. The mass
and kinetic energy of the HI clouds are consistent with the mass exchange rate
predicted by the galactic fountain model. If the HVC population in M 83 is
similar to that in our own Galaxy, then the Galactic HVCs must be distributed
within a radius of less than 25 kpc.Comment: 30 pages, 23 figures; accepted for publication in ApJ. Some figures
have been altered to reduce their siz
Detection of an intergalactic meteor particle with the 6-m telescope
On July 28, 2006 the 6-m telescope of the Special Astrophysical Observatory
of the Russian Academy of Sciences recorded the spectrum of a faint meteor. We
confidently identify the lines of FeI and MgI, OI, NI and molecular-nitrogen
N_2 bands. The entry velocity of the meteor body into the Earth's atmosphere
estimated from radial velocity is equal to 300 km/s. The body was several tens
of a millimeter in size, like chondrules in carbon chondrites. The radiant of
the meteor trajectory coincides with the sky position of the apex of the motion
of the Solar system toward the centroid of the Local Group of galaxies.
Observations of faint sporadic meteors with FAVOR TV CCD camera confirmed the
radiant at a higher than 96% confidence level. We conclude that this meteor
particle is likely to be of extragalactic origin. The following important
questions remain open: (1) How metal-rich dust particles came to be in the
extragalactic space? (2) Why are the sizes of extragalactic particles larger by
two orders of magnitude (and their masses greater by six orders of magnitude)
than common interstellar dust grains in our Galaxy? (3) If extragalactic dust
surrounds galaxies in the form of dust (or gas-and-dust) aureoles, can such
formations now be observed using other observational techniques (IR
observations aboard Spitzer satellite, etc.)? (4) If inhomogeneous
extragalactic dust medium with the parameters mentioned above actually exists,
does it show up in the form of irregularities on the cosmic microwave
background (WMAP etc.)?Comment: 9 pages, 6 EPS figure
Exploring Neutral Hydrogen and Galaxy Evolution with the SKA
One of the key science drivers for the development of the SKA is to observe
the neutral hydrogen, HI, in galaxies as a means to probe galaxy evolution
across a range of environments over cosmic time. Over the past decade, much
progress has been made in theoretical simulations and observations of HI in
galaxies. However, recent HI surveys on both single dish radio telescopes and
interferometers, while providing detailed information on global HI properties,
the dark matter distribution in galaxies, as well as insight into the
relationship between star formation and the interstellar medium, have been
limited to the local universe. Ongoing and upcoming HI surveys on SKA
pathfinder instruments will extend these measurements beyond the local universe
to intermediate redshifts with long observing programmes. We present here an
overview of the HI science which will be possible with the increased
capabilities of the SKA and which will build upon the expected increase in
knowledge of HI in and around galaxies obtained with the SKA pathfinder
surveys. With the SKA1 the greatest improvement over our current measurements
is the capability to image galaxies at reasonable linear resolution and good
column density sensitivity to much higher redshifts (0.2 < z < 1.7). So one
will not only be able to increase the number of detections to study the
evolution of the HI mass function, but also have the sensitivity and resolution
to study inflows and outflows to and from galaxies and the kinematics of the
gas within and around galaxies as a function of environment and cosmic time out
to previously unexplored depths. The increased sensitivity of SKA2 will allow
us to image Milky Way-size galaxies out to redshifts of z=1 and will provide
the data required for a comprehensive picture of the HI content of galaxies
back to z~2 when the cosmic star formation rate density was at its peak.Comment: 25 pages, 5 figures, 3 tables. Contribution to the conference
'Advancing Astrophysics with the Square Kilometre Array', June 8-13, 2014,
Giardini Naxos, Ital
Cold gas accretion in galaxies
Evidence for the accretion of cold gas in galaxies has been rapidly
accumulating in the past years. HI observations of galaxies and their
environment have brought to light new facts and phenomena which are evidence of
ongoing or recent accretion:
1) A large number of galaxies are accompanied by gas-rich dwarfs or are
surrounded by HI cloud complexes, tails and filaments. It may be regarded as
direct evidence of cold gas accretion in the local universe. It is probably the
same kind of phenomenon of material infall as the stellar streams observed in
the halos of our galaxy and M31. 2) Considerable amounts of extra-planar HI
have been found in nearby spiral galaxies. While a large fraction of this gas
is produced by galactic fountains, it is likely that a part of it is of
extragalactic origin. 3) Spirals are known to have extended and warped outer
layers of HI. It is not clear how these have formed, and how and for how long
the warps can be sustained. Gas infall has been proposed as the origin. 4) The
majority of galactic disks are lopsided in their morphology as well as in their
kinematics. Also here recent accretion has been advocated as a possible cause.
In our view, accretion takes place both through the arrival and merging of
gas-rich satellites and through gas infall from the intergalactic medium (IGM).
The infall may have observable effects on the disk such as bursts of star
formation and lopsidedness. We infer a mean ``visible'' accretion rate of cold
gas in galaxies of at least 0.2 Msol/yr. In order to reach the accretion rates
needed to sustain the observed star formation (~1 Msol/yr), additional infall
of large amounts of gas from the IGM seems to be required.Comment: To appear in Astronomy & Astrophysics Reviews. 34 pages.
Full-resolution version available at
http://www.astron.nl/~oosterlo/accretionRevie
Dual-readout Calorimetry
The RD52 Project at CERN is a pure instrumentation experiment whose goal is
to understand the fundamental limitations to hadronic energy resolution, and
other aspects of energy measurement, in high energy calorimeters. We have found
that dual-readout calorimetry provides heretofore unprecedented information
event-by-event for energy resolution, linearity of response, ease and
robustness of calibration, fidelity of data, and particle identification,
including energy lost to binding energy in nuclear break-up. We believe that
hadronic energy resolutions of {\sigma}/E 1 - 2% are within reach for
dual-readout calorimeters, enabling for the first time comparable measurement
preci- sions on electrons, photons, muons, and quarks (jets). We briefly
describe our current progress and near-term future plans. Complete information
on all aspects of our work is available at the RD52 website
http://highenergy.phys.ttu.edu/dream/.Comment: 10 pages, 10 figures, Snowmass White pape
- …
