2,194 research outputs found

    Favorite Melodies

    Get PDF

    Trait Evolution in Adaptive Radiations: Modeling and Measuring Interspecific Competition on Phylogenies

    Get PDF
    The incorporation of ecological processes into models of trait evolution is important for understanding past drivers of evolutionary change. Species interactions have long been thought to be key drivers of trait evolution. However, models for comparative data that account for interactions between species are lacking. One of the challenges is that such models are intractable and difficult to express analytically. Here we present phylogenetic models of trait evolution that include interspecific competition among chosen species. Competition is modeled as a tendency of sympatric species to evolve toward difference from one another, producing trait overdispersion and high phylogenetic signal. The model predicts elevated trait variance across species and a slowdown in evolutionary rate both across the clade and within each branch. The model also predicts a reduction in correlation between otherwise correlated traits. We use an approximate Bayesian computation approach to estimate model parameters. We find reasonable power to detect competition in sufficiently large (20+ species) trees compared with Brownian trait evolution and with Ornstein-Uhlenbeck and early burst models. We apply the model to examine the evolution of bill morphology of Darwin’s finches and find evidence that competition affects the evolution of bill length

    Ecophysiological traits of grasses: resolving the effects of photosynthetic pathway and phylogeny

    Get PDF
    C4 photosynthesis is an important example of convergent evolution in plants, having arisen in eudicots, monocots and diatoms. Comparisons between such diverse groups are confounded by phylogenetic and ecological differences, so that only broad generalisations can be made about the role of C4 photosynthesis in
determining ecophysiological traits. However, 60% of C4 species occur in the grasses (Poaceae) and molecular phylogenetic techniques confirm that there are between 8 and 17 independent origins of C4 photosynthesis in the Poaceae. In a screening experiment, we compared leaf physiology and growth traits across several major
independent C3 & C4 groups within the Poaceae, asking 1) which traits differ consistently between photosynthetic
types and 2) which traits differ consistently between clades within each photosynthetic type

    The Kolkata Paise Restaurant Problem and Resource Utilization

    Full text link
    We study the dynamics of the "Kolkata Paise Restaurant problem". The problem is the following: In each period, N agents have to choose between N restaurants. Agents have a common ranking of the restaurants. Restaurants can only serve one customer. When more than one customer arrives at the same restaurant, one customer is chosen at random and is served; the others do not get the service. We first introduce the one-shot versions of the Kolkata Paise Restaurant problem which we call one-shot KPR games. We then study the dynamics of the Kolkata Paise Restaurant problem (which is a repeated game version of any given one shot KPR game) for large N. For statistical analysis, we explore the long time steady state behavior. In many such models with myopic agents we get under-utilization of resources, that is, we get a lower aggregate payoff compared to the social optimum. We study a number of myopic strategies, focusing on the average occupation fraction of restaurants.Comment: revtex4, 8 pages, 3 figs, accepted in Physica

    Sex Allocation Patterns across Cooperatively Breeding Birds Do Not Support Predictions of the Repayment Hypothesis

    Get PDF
    The repayment hypothesis predicts that reproductive females in cooperative breeding systems overproduce the helping sex. Thanks to well-documented examples of this predicted sex ratio bias, repayment has been considered an important driver of variation in sex allocation patterns. Here we test this hypothesis using data on population brood sex ratios and facultative sex allocation from 28 cooperatively breeding bird species. We find that biased sex ratios of helpers do not correlate with production biases in brood sex ratios, contrary to predictions. We also test whether females facultatively produce the helping sex in response to a deficiency of help (i.e., when they have fewer or no helpers). Although this is observed in a few species, it is not a significant trend overall, with a mean effect size close to zero. We conclude that, surprisingly, repayment does not appear to be a widespread influence on sex ratios in cooperatively breeding birds. We discuss possible explanations for our results and encourage further examination of the repayment model

    Complex Relationships between Competing Guilds along Large-Scale Environmental Gradients

    Get PDF
    Despite much research over the past 30 years there is still little general understanding of how the outcomes of interactions vary along environmental gradients, particularly at large geographic scales. A simple expectation is that decreasing environmental quality should reduce densities of competitors and hence the effects of competition should weaken in poorer environments. A counter-intuitive consequence is that associations between densities of competitors might change from negative to positive as environments decrease in quality. Here we test these predictions in a set of vascular plant communities where perennial species share space and resources with less competitive annuals. We surveyed nine grey dune communities annually for 5 years along a cross-European latitudinal gradient of habitat quality. We find that densities of annual and perennial species are negatively correlated at the high-quality end of the gradient, while at the low-quality end guild densities are uncorrelated or positively correlated, consistent with a weakening of competition linked to increasing environmental limitations. Our results suggest that even simple interactions can give rise to non-obvious changes in species associations along environmental gradients. They highlight that understanding the outcome of species interactions may require explicit characterization of their changing intensity with environmental quality, and that the factors limiting species’ co-distribution can vary along environmental gradients

    A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies

    Get PDF
    Phylogenetic comparative methods are increasingly used to give new insights into the dynamics of trait evolution in deep time. For continuous traits the core of these methods is a suite of models that attempt to capture evolutionary patterns by extending the Brownian constant variance model. However, the properties of these models are often poorly understood, which can lead to the misinterpretation of results. Here we focus on one of these models – the Ornstein Uhlenbeck (OU) model. We show that the OU model is frequently incorrectly favoured over simpler models when using Likelihood ratio tests, and that many studies fitting this model use datasets that are small and prone to this problem. We also show that very small amounts of error in datasets can have profound effects on the inferences derived from OU models. Our results suggest that simulating fitted models and comparing with empirical results is critical when fitting OU and other extensions of the Brownian model. We conclude by making recommendations for best practice in fitting OU models in phylogenetic comparative analyses, and for interpreting the parameters of the OU model

    Testing mechanisms of compensatory fitness of dioecy in a cosexual world

    Get PDF
    Questions: All else being equal, populations of dioecious species with a 50:50 sex ratio have only half the effective reproductive population size of bisexual species of equal abundance. Consequently, there is a need to explain how dioecious and bisexual species coexist. Increased mean individual seed mass, fecundity, and population density have all been proposed as attributes of unisexual individuals or populations that may contribute to the persistence or resilience of dioecious species. To date, no studies have compared sympatric dioecious and cosexual species with respect to all three components of fitness. In this study, we sought evidence for these compensatory advantages (higher seed mass, greater seed production per unit basal area, and higher population density) in dioecious species. Location: Five 20–25 ha forest dynamic plots spanning a latitudinal gradient in China, including two temperate, two subtropical, and one tropical forest. Methods: We used a phylogenetically corrected generalized linear modelling approach to assess the phylogenetic dependence and joint evolution of sexual system, seed mass and production, and ecological abundances among 48–333 species and 32,568–136,237 individuals per forest. Results: Across all five forests, we detected no consistent advantage for dioecious relative to sympatric cosexual species with respect to mean individual seed mass, seed production or the density of stems in any size class. Conclusions: Our study suggests that seed traits may provide compensatory mechanisms in some forests, but most often the coexistence of sexual systems cannot be explained by advantages of dioecy related to seed quality and demographic parameters. Future investigations of the factors that promote coexistence may increase our understanding by expanding the search to include attributes such as lifespan and tolerance or resistance to herbivores

    Abundance-Occupancy Relationships in Deep Sea Wood Fall Communities

    Get PDF
    The generally positive relationship between the number of sites a species occupies and its average abundance within those sites provides an important link between population processes occurring at different spatial scales. Although such Abundance-Occupancy Relationships (AORs) have been documented across a very wide range of taxa and in many different environments, little is known of such patterns in Earth's largest ecosystem, the deep sea. Wood falls—derived from natural or anthropogenic inputs of wood into the oceans—constitute an important deep-sea habitat, habouring their own unique communities ultimately entirely dependent on the wood for chemical energy. In this study we take advantage of the unique features of an experimental wood fall deployment to examine AORs for the first time in deep-sea invertebrates. The study design combines advantages of both experimental (tractability, control of key environmental parameters) and observational (natural colonisation by taxonomically diverse communities) studies. We show that the interspecific AOR is strongly positive across the 48 species occurring over 32 wood fall communities. The precise form of the AOR is mediated by both species-level life history (body size) and by the colonisation stage at which communities were harvested, but not by environmental energy (wood fall size). Temporal dynamics within species are also generally consistent with positive intraspecific AORs. This support for positive AORs in the deep sea is an important extension of a macroecological generality into a new environment offering considerable potential for further testing and developing mechanistic macroecological theories

    Towards a general framework for predicting threat status of data-deficient species from phylogenetic, spatial and environmental information

    Get PDF
    In taxon-wide assessments of threat status many species remain not included owing to lack of data. Here, we present a novel spatial-phylogenetic statistical framework that uses a small set of readily available or derivable characteristics, including phylogenetically imputed body mass and remotely sensed human encroachment, to provide initial baseline predictions of threat status for data-deficient species. Applied to assessed mammal species worldwide, the approach effectively identifies threatened species and predicts the geographical variation in threat. For the 483 data-deficient species, the models predict highly elevated threat, with 69% ‘at-risk’ species in this set, compared with 22% among assessed species. This results in 331 additional potentially threatened mammals, with elevated conservation importance in rodents, bats and shrews, and countries like Colombia, Sulawesi and the Philippines. These findings demonstrate the future potential for combining phylogenies and remotely sensed data with species distributions to identify species and regions of conservation concern
    corecore