51 research outputs found

    A non-covalent peptide-based carrier for in vivo delivery of DNA mimics

    Get PDF
    The dramatic acceleration in identification of new nucleic-acid-based therapeutic molecules has provided new perspectives in pharmaceutical research. However, their development is limited by their poor cellular uptake and inefficient trafficking. Here we describe a short amphipathic peptide, Pep-3, that combines a tryptophan/phenylalanine domain with a lysine/arginine-rich hydrophilic motif. Pep-3 forms stable nano-size complexes with peptide-nucleic acid analogues and promotes their efficient delivery into a wide variety of cell lines, including primary and suspension lines, without any associated cytotoxicity. We demonstrate that Pep-3-mediated delivery of antisense-cyclin B1-charged-PNA blocks tumour growth in vivo upon intratumoral and intravenous injection. Moreover, we show that PEGylation of Pep-3 significantly improves complex stability in vivo and consequently the efficiency of antisense cyclin B1 administered intravenously. Given the biological characteristics of these vectors, we believe that peptide-based delivery technologies hold a true promise for therapeutic applications of DNA mimics

    Rapid Identification of Malaria Vaccine Candidates Based on α-Helical Coiled Coil Protein Motif

    Get PDF
    To identify malaria antigens for vaccine development, we selected α-helical coiled coil domains of proteins predicted to be present in the parasite erythrocytic stage. The corresponding synthetic peptides are expected to mimic structurally “native” epitopes. Indeed the 95 chemically synthesized peptides were all specifically recognized by human immune sera, though at various prevalence. Peptide specific antibodies were obtained both by affinity-purification from malaria immune sera and by immunization of mice. These antibodies did not show significant cross reactions, i.e., they were specific for the original peptide, reacted with native parasite proteins in infected erythrocytes and several were active in inhibiting in vitro parasite growth. Circular dichroism studies indicated that the selected peptides assumed partial or high α-helical content. Thus, we demonstrate that the bioinformatics/chemical synthesis approach described here can lead to the rapid identification of molecules which target biologically active antibodies, thus identifying suitable vaccine candidates. This strategy can be, in principle, extended to vaccine discovery in a wide range of other pathogens

    Design and synthesis of a peptide derived from positions 195-244 of human cdc25C phosphatase

    No full text
    International audienceWe have designed, synthesized and purified a 51 amino acid peptide derived from an essential domain of human cdc25C phosphatase. In vivo, differential phosphorylation of this domain regulates either the induction of mitotic processes, or the checkpoint arrest of eukaryotic cells in response to DNA damage. Peptide synthesis was achieved using the stepwise Fmoc strategy and resulted in an important yield of highly pure peptide. The final peptide was identified by amino acid analysis, electrospray mass spectrometry and nuclear magnetic resonance, which revealed that one of the two methionines within the peptide was oxidized into its sulphoxide derivative We investigated whether this 51 amino acid peptide folded into secondary structures in solution by circular dichroism and observed the formation of alpha helices in TFE. Finally, we verified that this peptide could bind to its biologically relevant 14-3-3 partner in vitro by fluorescence spectroscopy

    An Essential Phosphorylation-site Domain of Human cdc25C Interacts with Both 14-3-3 and Cyclins

    No full text
    International audienceHuman cdc25C is a dual-specificity phosphatase involved in the regulation of cell cycle progression in both unperturbed cells and in cells subject to DNA damage or replication checkpoints. In this study, we describe the structure-function relationship of an essential domain of human cdc25C that interacts with 14-3-3 proteins. We show that this domain is a bi-functional interactive motif that interacts with cyclins primarily through their P-box motif in addition to 14-3-3 proteins. Characterization of the structural features of this domain by NMR and circular dichroism reveals two distinct alpha helical moieties interconnected by a loop carrying the 14-3-3 binding site. Moreover, the helical folding is induced upon binding to 14-3-3, suggestive of a conformational regulation of this domain of cdc25C through interactions with partner proteins in vivo. Combining our structural and biochemical data, we propose a detailed model of the molecular mechanism of cdc25C regulation by differential association with 14-3-3 and cdc2-cyclin B

    Translocating peptides and proteins and their use for gene delivery

    No full text
    International audienceA dramatic surge in the development of peptides for gene delivery in vitro and in vivo has been witnessed in the past decade. A better understanding of the structural and mechanistic properties of peptides has been an important step for the rational design of optimal peptide-based gene delivery systems. Research has focused on the design of short synthetic peptides that overcome both extracellular and intracellular limitations of other gene delivery systems by binding reversibly and condensing DNA, specifically targeting cells and/or tissues, rapidly releasing plasmids into the cytoplasm and mediating efficient nuclear translocation

    Peptide-Based Strategy for siRNA Delivery into Mammalian Cells

    No full text
    International audienceThe potential to control and alter gene expression constitutes an essential strategy in both fundamental and pharmaceutical research. The recent discovery of the RNA interference pathway in a wide variety of eukaryotic organisms has provided a novel means of characterizing gene function in mammalian cells and new perspectives in both molecular biology and future therapeutic developments (1, 2, 3). Short, interfering RNAs (siRNAs) constitute a powerful tool to silence gene expression posttranscriptionally (1, 2, 3). However, the major limitation of siRNA application, as for most antisense or nucleic acid-based strategies, remains their poor cellular uptake associated with low permeability of the cell membrane to nucleic acids (4,5). Several viral (6, 7, 8, 9) and nonviral (6,10) strategies have been proposed to improve the delivery of either siRNAs expressing vectors or synthetic siRNAs, both in cultured cells and in vivo (6). So far, although siRNA transfection can be achieved with classical laboratory-cultured cell lines using lipid-based formulations, siRNA delivery remains a major challenge for many cell lines and there is still no reasonably efficient method for in vivo application (6). The most efficient method for in vivo applications is the nonviral “hydrodynamic” tail-vein injection of mice with high doses of siRNA (11, 12, 13). Cell-penetrating peptides are powerful carriers for cellular uptake of a variety of macromolecules, including proteins, peptides, and oligonucleotides (14, 15, 16, 17). Several peptide-based strategies have been developed to improve the delivery of oligonucleotides both in vitro and in vivo using either covalent or complex approaches (18, 19, 20)

    Cell-penetrating peptides: from molecular mechanisms to therapeutics.

    No full text
    International audienceThe recent discovery of new potent therapeutic molecules which do not reach the clinic due to poor delivery and low bioavailability have made the delivery of molecules a keystone in therapeutic development. Several technologies have been designed to improve cellular uptake of therapeutic molecules, including CPPs (cell-penetrating peptides), which represent a new and innovative concept to bypass the problem of bioavailability of drugs. CPPs constitute very promising tools and have been successfully applied for in vivo. Two CPP strategies have been described to date; the first one requires chemical linkage between the drug and the carrier for cellular drug internalization, and the second is based on the formation of stable complexes with drugs, depending on their chemical nature. The Pep and MPG families are short amphipathic peptides, which form stable nanoparticles with proteins and nucleic acids respectively. MPG- and Pep-based nanoparticles enter cells independently of the endosomal pathway and efficiently deliver cargoes, in a fully biologically active form, into a large variety of cell lines, as well as in animal models. This review focuses on the structure-function relationship of non-covalent MPG and Pep-1 strategies, and their requirement for cellular uptake of biomolecules and applications in cultured cells and animal models

    The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes

    No full text
    International audienceCell-penetrating peptides (CPPs) constitute a family of peptides whose unique characteristic is their ability to insert into and cross biological membranes. Cell-penetrating peptide carriers of the Pep family are amphipathic peptides which have been shown to deliver peptides and proteins into a wide variety of cells through formation of non-covalent complexes with their cargo. In this study, we have investigated the morphological features of different Pep-1/cargo complexes by scanning electron microscopy and light scattering measurements. We provide first-time evidence that biologically efficient complexes of Pep-1/p27Kip tumour suppressor physically exist in the form of discrete nanoparticles. Moreover, we have characterized the relationship between the Pep-1/cargo ratio, the size and homogeneity of the nanoparticles formed, and their efficiency in delivering the cargo into cells, and report that particle size and homogeneity is both directly dependent on the ratio of Pep-1/cargo formulations, and responsible for their biological efficienc
    corecore