4,357 research outputs found
Gender Equality and Human Rights
The achievement of substantive equality is understood as having four dimensions: redressing disadvantage; countering stigma, prejudice, humiliation and violence; transforming social and institutional structures; and facilitating political participation and social inclusion. The paper shows that, although not articulated in this way, these dimensions are clearly visible in the application by the various interpretive bodies of the principles of equality to the enjoyment of treaty rights. At the same time, it shows that there are important ways in which these bodies could go further, both in articulating the goals of substantive equality and in applying them when assessing compliance by States with international obligations of equality. The substantive equality approach, in its four-dimensional form, provides an evaluative tool with which to assess policy in relation to the right to gender equality. The paper elaborates on the four-dimensional approach to equality and how it can be used to evaluate the impact of social and economic policies on women to determine how to make the economy 'work for women' and advance gender equality. The paper suggests that there is a growing consensus at the international level on an understanding of substantive equality that reflects the four dimensional framework. This paper was produced for UN Women's flagship report "Progress of the World's Women 2015-2016" and is released as part of the UN Women discussion paper series
Augmenting graphs to minimize the diameter
We study the problem of augmenting a weighted graph by inserting edges of
bounded total cost while minimizing the diameter of the augmented graph. Our
main result is an FPT 4-approximation algorithm for the problem.Comment: 15 pages, 3 figure
The Hate Factory: A Glimpse into the Effects of the Prison Gang Subculture on Non-Violent Offenders
In an effort to ascertain ways to combat the indoctrination of non-violent, low-level offenders into prison gangs, this study looks at a synthesis of previous research on gang management strategies in conjunction with interviews given to a select group of Southern Illinois prison administrators. It is concluded that the best way to keep these vulnerable offenders away from the influence of prison gangs is to quickly separate the two groups as best as possible. This study is admittedly modest in scope, but the findings are couched within current literature looking to determine effective ways to combat the spread of prison gang propaganda and provides a relatively useful framework for future studies on the subject
Succinct Partial Sums and Fenwick Trees
We consider the well-studied partial sums problem in succint space where one
is to maintain an array of n k-bit integers subject to updates such that
partial sums queries can be efficiently answered. We present two succint
versions of the Fenwick Tree - which is known for its simplicity and
practicality. Our results hold in the encoding model where one is allowed to
reuse the space from the input data. Our main result is the first that only
requires nk + o(n) bits of space while still supporting sum/update in O(log_b
n) / O(b log_b n) time where 2 <= b <= log^O(1) n. The second result shows how
optimal time for sum/update can be achieved while only slightly increasing the
space usage to nk + o(nk) bits. Beyond Fenwick Trees, the results are primarily
based on bit-packing and sampling - making them very practical - and they also
allow for simple optimal parallelization
Speeding up shortest path algorithms
Given an arbitrary, non-negatively weighted, directed graph we
present an algorithm that computes all pairs shortest paths in time
, where is the number of
different edges contained in shortest paths and is a running
time of an algorithm to solve a single-source shortest path problem (SSSP).
This is a substantial improvement over a trivial times application of
that runs in . In our algorithm we use
as a black box and hence any improvement on results also in improvement
of our algorithm.
Furthermore, a combination of our method, Johnson's reweighting technique and
topological sorting results in an all-pairs
shortest path algorithm for arbitrarily-weighted directed acyclic graphs.
In addition, we also point out a connection between the complexity of a
certain sorting problem defined on shortest paths and SSSP.Comment: 10 page
Efficient Dynamic Approximate Distance Oracles for Vertex-Labeled Planar Graphs
Let be a graph where each vertex is associated with a label. A
Vertex-Labeled Approximate Distance Oracle is a data structure that, given a
vertex and a label , returns a -approximation of
the distance from to the closest vertex with label in . Such
an oracle is dynamic if it also supports label changes. In this paper we
present three different dynamic approximate vertex-labeled distance oracles for
planar graphs, all with polylogarithmic query and update times, and nearly
linear space requirements
Faster Parametric Shortest Path and Minimum Balance Algorithms
The parametric shortest path problem is to find the shortest paths in graph
where the edge costs are of the form w_ij+lambda where each w_ij is constant
and lambda is a parameter that varies. The problem is to find shortest path
trees for every possible value of lambda.
The minimum-balance problem is to find a ``weighting'' of the vertices so
that adjusting the edge costs by the vertex weights yields a graph in which,
for every cut, the minimum weight of any edge crossing the cut in one direction
equals the minimum weight of any edge crossing the cut in the other direction.
The paper presents fast algorithms for both problems. The algorithms run in
O(nm+n^2 log n) time. The paper also describes empirical studies of the
algorithms on random graphs, suggesting that the expected time for finding a
minimum-mean cycle (an important special case of both problems) is O(n log(n) +
m)
Fast Locality-Sensitive Hashing Frameworks for Approximate Near Neighbor Search
The Indyk-Motwani Locality-Sensitive Hashing (LSH) framework (STOC 1998) is a
general technique for constructing a data structure to answer approximate near
neighbor queries by using a distribution over locality-sensitive
hash functions that partition space. For a collection of points, after
preprocessing, the query time is dominated by evaluations
of hash functions from and hash table lookups and
distance computations where is determined by the
locality-sensitivity properties of . It follows from a recent
result by Dahlgaard et al. (FOCS 2017) that the number of locality-sensitive
hash functions can be reduced to , leaving the query time to be
dominated by distance computations and
additional word-RAM operations. We state this result as a general framework and
provide a simpler analysis showing that the number of lookups and distance
computations closely match the Indyk-Motwani framework, making it a viable
replacement in practice. Using ideas from another locality-sensitive hashing
framework by Andoni and Indyk (SODA 2006) we are able to reduce the number of
additional word-RAM operations to .Comment: 15 pages, 3 figure
Optimal Color Range Reporting in One Dimension
Color (or categorical) range reporting is a variant of the orthogonal range
reporting problem in which every point in the input is assigned a \emph{color}.
While the answer to an orthogonal point reporting query contains all points in
the query range , the answer to a color reporting query contains only
distinct colors of points in . In this paper we describe an O(N)-space data
structure that answers one-dimensional color reporting queries in optimal
time, where is the number of colors in the answer and is the
number of points in the data structure. Our result can be also dynamized and
extended to the external memory model
- …
