1,909 research outputs found

    Model Transport: Towards Scalable Transfer Learning on Manifolds

    Get PDF
    We consider the intersection of two research fields: transfer learning and statistics on manifolds. In particular, we consider, for manifold-valued data, transfer learning of tangent-space models such as Gaussians distributions, PCA, regression, or classifiers. Though one would hope to simply use ordinary Rn-transfer learning ideas, the manifold structure prevents it. We overcome this by basing our method on inner-product-preserving parallel transport, a well-known tool widely used in other problems of statistics on manifolds in computer vision. At first, this straightforward idea seems to suffer from an obvious shortcoming: Transporting large datasets is prohibitively expensive, hindering scalability. Fortunately, with our approach, we never transport data. Rather, we show how the statistical models themselves can be transported, and prove that for the tangent-space models above, the transport “commutes” with learning. Consequently, our compact framework, applicable to a large class of manifolds, is not restricted by the size of either the training or test sets. We demonstrate the approach by transferring PCA and logistic-regression models of real-world data involving 3D shapes and image descriptors

    A Mixture of Manhattan Frames: Beyond the Manhattan World

    Get PDF
    Objects and structures within man-made environments typically exhibit a high degree of organization in the form of orthogonal and parallel planes. Traditional approaches to scene representation exploit this phenomenon via the somewhat restrictive assumption that every plane is perpendicular to one of the axes of a single coordinate system. Known as the Manhattan-World model, this assumption is widely used in computer vision and robotics. The complexity of many real-world scenes, however, necessitates a more flexible model. We propose a novel probabilistic model that describes the world as a mixture of Manhattan frames: each frame defines a different orthogonal coordinate system. This results in a more expressive model that still exploits the orthogonality constraints. We propose an adaptive Markov-Chain Monte-Carlo sampling algorithm with Metropolis-Hastings split/merge moves that utilizes the geometry of the unit sphere. We demonstrate the versatility of our Mixture-of-Manhattan-Frames model by describing complex scenes using depth images of indoor scenes as well as aerial-LiDAR measurements of an urban center. Additionally, we show that the model lends itself to focal-length calibration of depth cameras and to plane segmentation.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Award N00014-11-1-0688)United States. Defense Advanced Research Projects Agency (Award FA8650-11-1-7154)Technion, Israel Institute of Technology (MIT Postdoctoral Fellowship Program

    Active-distributed temperature sensing to continuously quantify vertical flow in boreholes

    Get PDF
    We show how a distributed borehole flowmeter can be created from armored Fiber Optic cables with the Active-Distributed Temperature Sensing (A-DTS) method. The principle is that in a flowing fluid, the difference in temperature between a heated and unheated cable is a function of the fluid velocity. We outline the physical basis of the methodology and report on the deployment of a prototype A-DTS flowmeter in a fractured rock aquifer. With this design, an increase in flow velocity from 0.01 to 0.3 m s−1 elicited a 2.5°C cooling effect. It is envisaged that with further development this method will have applications where point measurements of borehole vertical flow do not fully capture combined spatiotemporal dynamics

    Characterizing groundwater flow and heat transport in fractured rock using Fiber-Optic Distributed Temperature Sensing

    Get PDF
    International audienceWe show how fully distributed space-time measurements with Fiber-Optic Distributed Temperature Sensing (FO-DTS) can be used to investigate groundwater flow and heat transport in fractured media. Heat injection experiments are combined with temperature measurements along fiber-optic cables installed in boreholes. Thermal dilution tests are shown to enable detection of cross-flowing fractures and quantification of the cross flow rate. A cross borehole thermal tracer test is then analyzed to identify fracture zones that are in hydraulic connection between boreholes and to estimate spatially distributed temperature breakthrough in each fracture zone. This provides a significant improvement compared to classical tracer tests, for which concentration data are usually integrated over the whole abstraction borehole. However, despite providing some complementary results, we find that the main contributive fracture for heat transport is different to that for a solute tracer

    Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama

    Get PDF
    A modular borehole monitoring concept has been implemented to provide a suite of well-based monitoring tools that can be deployed cost effectively in a flexible and robust package. The initial modular borehole monitoring system was deployed as part of a CO2 injection test operated by the Southeast Regional Carbon Sequestration Partnership near Citronelle, Alabama. The Citronelle modular monitoring system transmits electrical power and signals, fibre-optic light pulses, and fluids between the surface and a reservoir. Additionally, a separate multi-conductor tubing-encapsulated line was used for borehole geophones, including a specialized clamp for casing clamping with tubing deployment. The deployment of geophones and fibre-optic cables allowed comparison testing of distributed acoustic sensing. We designed a large source effort (>64 sweeps per source point) to test fibre-optic vertical seismic profile and acquired data in 2013. The native measurement in the specific distributed acoustic sensing unit used (an iDAS from Silixa Ltd) is described as a localized strain rate. Following a processing flow of adaptive noise reduction and rebalancing the signal to dimensionless strain, improvement from repeated stacking of the source was observed. Conversion of the rebalanced strain signal to equivalent velocity units, via a scaling by local apparent velocity, allows quantitative comparison of distributed acoustic sensing and geophone data in units of velocity. We see a very good match of uncorrelated time series in both amplitude and phase, demonstrating that velocity-converted distributed acoustic sensing data can be analyzed equivalent to vertical geophones. We show that distributed acoustic sensing data, when averaged over an interval comparable to typical geophone spacing, can obtain signal-to-noise ratios of 18 dB to 24 dB below clamped geophones, a result that is variable with noise spectral amplitude because the noise characteristics are not identical. With vertical seismic profile processing, we demonstrate the effectiveness of downgoing deconvolution from the large spatial sampling of distributed acoustic sensing data, along with improved upgoing reflection quality. We conclude that the extra source effort currently needed for tubing-deployed distributed acoustic sensing vertical seismic profile, as part of a modular monitoring system, is well compensated by the extra spatial sampling and lower deployment cost as compared with conventional borehole geophones

    Digital Drug Safety Surveillance: Monitoring Pharmaceutical Products in Twitter

    Get PDF
    Background: Traditional adverse event (AE) reporting systems have been slow in adapting to online AE reporting from patients, relying instead on gatekeepers, such as clinicians and drug safety groups, to verify each potential event. In the meantime, increasing numbers of patients have turned to social media to share their experiences with drugs, medical devices, and vaccines. Objective: The aim of the study was to evaluate the level of concordance between Twitter posts mentioning AE-like reactions and spontaneous reports received by a regulatory agency. Methods: We collected public English-language Twitter posts mentioning 23 medical products from 1 November 2012 through 31 May 2013. Data were filtered using a semi-automated process to identify posts with resemblance to AEs (Proto-AEs). A dictionary was developed to translate Internet vernacular to a standardized regulatory ontology for analysis (MedDRA®). Aggregated frequency of identified product-event pairs was then compared with data from the public FDA Adverse Event Reporting System (FAERS) by System Organ Class (SOC). Results: Of the 6.9 million Twitter posts collected, 4,401 Proto-AEs were identified out of 60,000 examined. Automated, dictionary-based symptom classification had 72 % recall and 86 % precision. Similar overall distribution profiles were observed, with Spearman rank correlation rho of 0.75 (p < 0.0001) between Proto-AEs reported in Twitter and FAERS by SOC. Conclusion: Patients reporting AEs on Twitter showed a range of sophistication when describing their experience. Despite the public availability of these data, their appropriate role in pharmacovigilance has not been established. Additional work is needed to improve data acquisition and automation
    corecore