1,105 research outputs found

    Recovery and separation of precious metals from space

    Get PDF
    During the past year a viable procedure centered around centrifugal partition chromatography (CPC), a multistage liquid-liquid partitioning technique for the separation of precious metals (Pt, Pd, Rh, Ir, Os, Ru), was developed. Stable and inexpensive ligands that can be readily recycled to achieve the separations of the precious metals were identified. The separation methods developed so far yield three separate fractions: Pt, Pd, and Rh-Ir. The Rh-Ir pair can be separated in a subsequent run. The total amount of precious metals separated in a single experiment varied from 1 to 50 mg. The factors affecting the efficiencies of these separations were studied. The kinetics of the decomposition of the complex and the ion pair have a major bearing on these efficiencies, with slow kinetics resulting in poor efficiencies. The methods for the improvement of the efficiencies were also investigated. For example, significant improvement in the efficiencies and separation times for Pt and Pd were achieved by the use of chloride gradient in the mobile phase. Two papers were published and talks were presented on our work at the FACSS meeting in Anaheim, Oct. 1991, and at the Pittsburgh Conference in New Orleans, Mar. 1992

    Quantum description of the orientational degrees of freedom in a biaxial nematic liquid

    Full text link
    The quantum mechanical version of a classical model for studying the orientational degrees of freedom corresponding to a nematic liquid composed of biaxial molecules is presented. The effective degrees of freedom are described by operators carrying an SU(3) representation, which allows the explicit calculation of the partition function in the mean field approximation. The algebraic consistency conditions are solved numerically and the equilibrium phases of the system are determined. In particular, the entropy, the specific heat and the order parameters are presented for different choices of the constituent biaxial molecules. Our results reproduce the classical calculation in the limit of high temperatures and high quantum numbers.Comment: 33 pages, Latex, 11 figure

    Electronic excited state of protonated aromatic molecules: protonated Fluorene

    Get PDF
    The photo-fragmentation spectrum of protonated fluorene has been recorded in the visible spectral region, largely red shifted as compared to the first excited state absorption of neutral fluorene. The spectrum shows two different vibrational progressions, separated by 0.19 eV that are assigned to the absorption of two isomers. As in protonated linear PAHs, comparison with ab-initio calculations indicates that the red shift is due to the charge transfer character of the excited state

    Dynamic hysteresis from zigzag domain walls

    Get PDF
    We investigate dynamic hysteresis in ferromagnetic thin films with zigzag domain walls. We introduce a discrete model describing the motion of a wall in a disordered ferromagnet with in-plane magnetization, driven by an external magnetic field, considering the effects of dipolar interactions and anisotropy. We analyze the effects of external field frequency and temperature on the coercive field by Monte Carlo simulations, and find a good agreement with the experimental data reported in literature for Fe/GaAs films. This implies that dynamic hysteresis in this case can be explained by a single propagating domain wall model without invoking domain nucleation.Comment: 10 pages, 13 figures; minor modifications and two figures adde

    Effects of field bumps due to slotted poles

    Get PDF

    Barkhausen noise from zigzag domain walls

    Full text link
    We investigate the Barkhausen noise in ferromagnetic thin films with zigzag domain walls. We use a cellular automaton model that describes the motion of a zigzag domain wall in an impure ferromagnetic quasi-two dimensional sample with in-plane uniaxial magnetization at zero temperature, driven by an external magnetic field. The main ingredients of this model are the dipolar spin-spin interactions and the anisotropy energy. A power law behavior with a cutoff is found for the probability distributions of size, duration and correlation length of the Barkhausen avalanches, and the critical exponents are in agreement with the available experiments. The link between the size and the duration of the avalanches is analyzed too, and a power law behavior is found for the average size of an avalanche as a function of its duration.Comment: 11 pages, 12 figure

    Probing a non-biaxial behavior of infinitely thin hard platelets

    Full text link
    We give a criterion to test a non-biaxial behavior of infinitely thin hard platelets of D2hD_{2h} symmetry based upon the components of three order parameter tensors. We investigated the nematic behavior of monodisperse infinitely thin rectangular hard platelet systems by using the criterion. Starting with a square platelet system, and we compared it with rectangular platelet systems of various aspect ratios. For each system, we performed equilibration runs by using isobaric Monte Carlo simulations. Each system did not show a biaxial nematic behavior but a uniaxial nematic one, despite of the shape anisotropy of those platelets. The relationship between effective diameters by simulations and theoretical effective diameters of the above systems was also determined.Comment: Submitted to JPS

    Biaxial nematic phases in fluids of hard board-like particles

    Full text link
    We use density-functional theory, of the fundamental-measure type, to study the relative stability of the biaxial nematic phase, with respect to non-uniform phases such as smectic and columnar, in fluids made of hard board-like particles with sizes σ1>σ2>σ3\sigma_1>\sigma_2>\sigma_3. A restricted-orientation (Zwanzig) approximation is adopted. Varying the ratio κ1=σ1/σ2\kappa_1=\sigma_1/\sigma_2 while keeping κ2=σ2/σ3\kappa_2=\sigma_2/\sigma_3, we predict phase diagrams for various values of κ2\kappa_2 which include all the uniform phases: isotropic, uniaxial rod- and plate-like nematics, and biaxial nematic. In addition, spinodal instabilities of the uniform phases with respect to fluctuations of the smectic, columnar and plastic-solid type, are obtained. In agreement with recent experiments, we find that the biaxial nematic phase begins to be stable for κ22.5\kappa_2\simeq 2.5. Also, as predicted by previous theories and simulations on biaxial hard particles, we obtain a region of biaxility centred on κ1κ2\kappa_1\approx\kappa_2 which widens as κ2\kappa_2 increases. For \kappa_2\agt 5 the region κ2κ1\kappa_2\approx\kappa_1 of the packing-fraction vs. κ1\kappa_1 phase diagrams exhibits interesting topologies which change qualitatively with κ2\kappa_2. We have found that an increasing biaxial shape anisotropy favours the formation of the biaxial nematic phase. Our study is the first to apply FMT theory to biaxial particles and, therefore, it goes beyond the second-order virial approximation. Our prediction that the phase diagram must be asymmetric is a genuine result of the present approach, which is not accounted for by previous studies based on second-order theories.Comment: Preprint format. 18 pages, 5 figure

    Recovery of precious metals from space

    Get PDF
    The overall objective is to develop efficient and economical separation and recovery methods for the platinum group and other precious metals. The separation of Pd(II) from Pt(II), Ir(III), and Rh(III) with trioctylphosphine oxide (TOPO) in heptane using centrifugal partition chromatography (CPC) was investigated. Activities to achieve this objective focussed on selection and evaluation of extraction systems for the PGM and modification of selected systems for multistage operation with a view to scaling up to desired macro levels. On the basis of preliminary evaluation of a series of simple metal complexing agents and chelating agents, the TOPO in heptane was selected as a likely system for isolating of Pd(II) and Pt(II) from the other PGM. A multistage apparatus capable of configuration as a simple rugged device, a centrifugal partition chromatograph (CPC), was shown to be effective. The extraction of Pd(II) was studied by CPC and batch solvent extraction. The distribution ratios for Pd(II) determined by both methods agree well. In low HCl concentrations (less than 0.1 M), the extracted species was PdCl2.(TOPO)2, irrespective of the chloride concentration, while at acid concentrations above 0.1 M, the Pd was extracted as the ion pair, 2(TOPO.H+).(PdCl4)2-. Base line separation of Pd(II) and Pt(II) in CPC was obtained under a variety of chloride and HCl concentration. It was demonstrated that the efficiency of CPC for metal separation was limited by chemical kinetic factors rather than instrumental factors, strongly suggesting that dramatic improvements can be achieved by studying reaction kinetics of formation and dissociation of the extractable metal complex

    Surface alignment, anchoring transitions, optical properties, and topological defects in the thermotropic nematic phase of organo-siloxane tetrapodes

    Get PDF
    We address the status of oxadiazole mesogens, C7 and C12, reported to show the biaxial nematic phase, by exploring material aspects (chemical stability, surface anchoring, optical and dielectric properties, topological defects) linked to the type of nematic order. We demonstrate that the isogyres splitting in conoscopic patterns of homeotropic state depends on sample thickness and is associated with variations of molecular tilt along the normal to substrates. We observe isolated topological point defects (boojums and hedgehogs), as well as nonsingular “escaped” disclinations pertinent only to the uniaxial nematic order. Our conclusion is that C7 and C12 feature only a uniaxial nematic phase and the apparent biaxiality is caused by surface effects
    corecore