427 research outputs found
Synaptic tagging and capture : differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation
Weakly tetanized synapses in area CA1 of the hippocampus that ordinarily display long-term potentiation lasting ~3 h (called early-LTP) will maintain a longer-lasting change in efficacy (late-LTP) if the weak tetanization occurs shortly before or after strong tetanization of an independent, but convergent, set of synapses in CA1. The synaptic tagging and capture hypothesis explains this heterosynaptic influence on persistence in terms of a distinction between local mechanisms of synaptic tagging and cell-wide mechanisms responsible for the synthesis, distribution, and capture of plasticity-related proteins (PRPs). We now present evidence that distinct CaM kinase (CaMK) pathways serve a dissociable role in these mechanisms. Using a hippocampal brain-slice preparation that permits stable long-term recordings in vitro for >10 h and using hippocampal cultures to validate the differential drug effects on distinct CaMK pathways, we show that tag setting is blocked by the CaMK inhibitor KN-93 (2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) that, at low concentration, is more selective for CaMKII. In contrast, the CaMK kinase inhibitor STO-609 [7H-benzimidazo(2,1-a)benz(de)isoquinoline-7-one-3-carboxylic acid] specifically limits the synthesis and/or availability of PRPs. Analytically powerful three-pathway protocols using sequential strong and weak tetanization in varying orders and test stimulation over long periods of time after LTP induction enable a pharmacological dissociation of these distinct roles of the CaMK pathways in late-LTP and so provide a novel framework for the molecular mechanisms by which synaptic potentiation, and possibly memories, become stabilized
MSK1 regulates transcriptional induction of Arc/Arg3.1 in response to neurotrophins
The immediate early gene activity-regulated cytoskeletal protein (Arc)/Arg3.1 and the neurotrophin brain-derived neurotrophic factor (BDNF) play important roles in synaptic plasticity and learning and memory in the mammalian brain. However, the mechanisms by which BDNF regulates the expression of Arc/Arg3.1 are unclear. In this study, we show that BDNF acts via the ERK1/2 pathway to activate the nuclear kinase mitogen- and stress-activated protein kinase 1 (MSK1). MSK1 then induces Arc/Arg3.1 expression via the phosphorylation of histone H3 at the Arc/Arg3.1 promoter. MSK1 can also phosphorylate the transcription factor cyclic-AMP response element-binding protein (CREB) on Ser133. However, this is not required for BDNF-induced Arc.Arg3.1 transcription as a Ser133Ala knockin mutation had no effect on Arc/Arg3.1 induction. In parallel, ERK1/2 directly activates Arc/Arg3.1 mRNA transcription via at least one serum response element on the promoter, which bind a complex of the Serum Response Factor (SRF) and a Ternary Complex Factor (TCF)
miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity
miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity
Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean
Experimental and modelling work suggests a strong dependence of olive flowering date on spring temperatures. Since airborne pollen concentrations reflect the flowering phenology of olive populations within a radius of 50 km, they may be a sensitive regional indicator of climatic warming. We assessed this potential sensitivity with phenology models fitted to flowering dates inferred from maximum airborne pollen data. Of four models tested, a thermal time model gave the best fit for Montpellier, France, and was the most effective at the regional scale, providing reasonable predictions for 10 sites in the western Mediterranean. This model was forced with replicated future temperature simulations for the western Mediterranean from a coupled ocean-atmosphere general circulation model (GCM). The GCM temperatures rose by 4·5 °C between 1990 and 2099 with a 1% per year increase in greenhouse gases, and modelled flowering date advanced at a rate of 6·2 d per °C. The results indicated that this long-term regional trend in phenology might be statistically significant as early as 2030, but with marked spatial variation in magnitude, with the calculated flowering date between the 1990s and 2030s advancing by 3–23 d. Future monitoring of airborne olive pollen may therefore provide an early biological indicator of climatic warming in the Mediterranean
Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents : an in vitro study
Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB) to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS) inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state
The impact of multiple interviews on the accuracy and narrative coherence of children’s memories
This study investigated the accuracy and narrative coherence of children’s accounts of a staged event across two interviews in comparison to a control condition to discern between the effects of repeated recall and delay between interviews. Seventy-six 8–11-year-olds took part in a first aid training session. Half of the children were randomly assigned to be interviewed using open-ended questions twice, one week after the event and five weeks after the event, whilst the other half were interviewed only once, five weeks after the event. Supporting the hypotheses, children reported more details over the course of two interviews than in a single interview either 1-week or 5-weeks after the event, and details that remained consistent across the two interviews were more accurate than reminisced details. The increased completeness of children’s accounts in two interviews was accompanied by an increase in the use of markers of causal-temporal connectedness. The hypothesis regarding the negative effect of delay on the accuracy of children’s testimony was partially supported, as details reported in the first, 1-week interview were more accurate than details in the single 5-week interview. Results demonstrate that multiple interviews can increase the narrative coherence of children’s testimony without decreasing their accuracy
SintAnt. La sintassi dell\u2019italiano antico. Atti del Convegno internazionale di studi (Universit\ue0 \u201cRoma Tre\u201d, 18-21 settembre 2002)
Enhancement of lysosomal glycohydrolase activity in human primary B lymphocytes during spontaneous apoptosis.
It has been shown that lysosomes are involved in B cell apoptosis but lysosomal glycohydrolases have never been investigated during this event. In this study we determined the enzymatic activities of some lysosomal glycohydrolases in human tonsil B lymphocytes (TBL) undergoing in vitro spontaneous apoptosis. Fluorimetric methods were used to evaluate the activities of β-hexosaminidases, α-mannosidase, β-mannosidase, β-galactosidase, β-glucuronidase and α-fucosidase. Results show that in TBL during spontaneous apoptosis, there is a significant increase in the activity of β-hexosaminidases, α-mannosidase, β-mannosidase and β-galactosidase. Also β-glucuronidase and α-fucosidase activities increase but not in a significant manner. Further studies on β-hexosaminidases revealed that also mRNA expression of the α- and β-subunits, which constitute these enzymes, increases during spontaneous TBL apoptosis. When TBL are protected from apoptosis by the thiol molecule N-acetyl-L-cysteine (NAC), there is no longer any increase in glycohydrolase activities and mRNA expression of β-hexosaminidase α- and β-subunits. This study demonstrates for the first time that the activities and expression of some lysosomal glycohydrolases are enhanced in TBL during spontaneous apoptosis and that these increases are prevented when TBL apoptosis is inhibited
- …
