2,175 research outputs found
F-Theory GUT Vacua on Compact Calabi-Yau Fourfolds
We present compact three-generation F-theory GUT models meeting in particular
the constraints of D3-tadpole cancellation and D-term supersymmetry. To this
end we explicitly construct elliptically fibered Calabi-Yau fourfolds as
complete intersections in a toric ambient space. Toric methods enable us to
control the singular geometry of the SU(5) GUT model. The GUT brane wraps a
non-generic del Pezzo surface admitting GUT symmetry breaking via hypercharge
flux. It is contractible to a curve and we demonstrate the existence of a
consistent decoupling limit. We compute the Euler characteristic of the
singular Calabi-Yau fourfold to show that our three-generation flux solutions
obtained via the spectral cover construction are consistent with D3-tadpole
cancellation.Comment: 22+12 pages; v2: minor clarifications on decoupling limi
Tate Form and Weak Coupling Limits in F-theory
We consider the weak coupling limit of F-theory in the presence of
non-Abelian gauge groups implemented using the traditional ansatz coming from
Tate's algorithm. We classify the types of singularities that could appear in
the weak coupling limit and explain their resolution. In particular, the weak
coupling limit of SU(n) gauge groups leads to an orientifold theory which
suffers from conifold singulaties that do not admit a crepant resolution
compatible with the orientifold involution. We present a simple resolution to
this problem by introducing a new weak coupling regime that admits
singularities compatible with both a crepant resolution and an orientifold
symmetry. We also comment on possible applications of the new limit to model
building. We finally discuss other unexpected phenomena as for example the
existence of several non-equivalent directions to flow from strong to weak
coupling leading to different gauge groups.Comment: 34 page
Virtual patients design and its effect on clinical reasoning and student experience : a protocol for a randomised factorial multi-centre study
Background
Virtual Patients (VPs) are web-based representations of realistic clinical cases. They are proposed as being an optimal method for teaching clinical reasoning skills. International standards exist which define precisely what constitutes a VP. There are multiple design possibilities for VPs, however there is little formal evidence to support individual design features. The purpose of this trial is to explore the effect of two different potentially important design features on clinical reasoning skills and the student experience. These are the branching case pathways (present or absent) and structured clinical reasoning feedback (present or absent).
Methods/Design
This is a multi-centre randomised 2x2 factorial design study evaluating two independent variables of VP design, branching (present or absent), and structured clinical reasoning feedback (present or absent).The study will be carried out in medical student volunteers in one year group from three university medical schools in the United Kingdom, Warwick, Keele and Birmingham. There are four core musculoskeletal topics. Each case can be designed in four different ways, equating to 16 VPs required for the research. Students will be randomised to four groups, completing the four VP topics in the same order, but with each group exposed to a different VP design sequentially. All students will be exposed to the four designs. Primary outcomes are performance for each case design in a standardized fifteen item clinical reasoning assessment, integrated into each VP, which is identical for each topic. Additionally a 15-item self-reported evaluation is completed for each VP, based on a widely used EViP tool. Student patterns of use of the VPs will be recorded.
In one centre, formative clinical and examination performance will be recorded, along with a self reported pre and post-intervention reasoning score, the DTI. Our power calculations indicate a sample size of 112 is required for both primary outcomes
U(n) Spectral Covers from Decomposition
We construct decomposed spectral covers for bundles on elliptically fibered
Calabi-Yau threefolds whose structure groups are S(U(1) x U(4)), S(U(2) x U(3))
and S(U(1) x U(1) x U(3)) in heterotic string compactifications. The
decomposition requires not only the tuning of the SU(5) spectral covers but
also the tuning of the complex structure moduli of the Calabi-Yau threefolds.
This configuration is translated to geometric data on F-theory side. We find
that the monodromy locus for two-cycles in K3 fibered Calabi-Yau fourfolds in a
stable degeneration limit is globally factorized with squared factors under the
decomposition conditions. This signals that the monodromy group is reduced and
there is a U(1) symmetry in a low energy effective field theory. To support
that, we explicitly check the reduction of a monodromy group in an appreciable
region of the moduli space for an gauge theory with (1+2) decomposition.
This may provide a systematic way for constructing F-theory models with U(1)
symmetries.Comment: 41 pages, 14 figures; v2: minor improvements and a reference adde
Validating module network learning algorithms using simulated data
In recent years, several authors have used probabilistic graphical models to
learn expression modules and their regulatory programs from gene expression
data. Here, we demonstrate the use of the synthetic data generator SynTReN for
the purpose of testing and comparing module network learning algorithms. We
introduce a software package for learning module networks, called LeMoNe, which
incorporates a novel strategy for learning regulatory programs. Novelties
include the use of a bottom-up Bayesian hierarchical clustering to construct
the regulatory programs, and the use of a conditional entropy measure to assign
regulators to the regulation program nodes. Using SynTReN data, we test the
performance of LeMoNe in a completely controlled situation and assess the
effect of the methodological changes we made with respect to an existing
software package, namely Genomica. Additionally, we assess the effect of
various parameters, such as the size of the data set and the amount of noise,
on the inference performance. Overall, application of Genomica and LeMoNe to
simulated data sets gave comparable results. However, LeMoNe offers some
advantages, one of them being that the learning process is considerably faster
for larger data sets. Additionally, we show that the location of the regulators
in the LeMoNe regulation programs and their conditional entropy may be used to
prioritize regulators for functional validation, and that the combination of
the bottom-up clustering strategy with the conditional entropy-based assignment
of regulators improves the handling of missing or hidden regulators.Comment: 13 pages, 6 figures + 2 pages, 2 figures supplementary informatio
Gauge Fluxes in F-theory and Type IIB Orientifolds
We provide a detailed correspondence between G_4 gauge fluxes in F-theory
compactifications with SU(n) and SU(n)x(1) gauge symmetry and their Type IIB
orientifold limit. Based on the resolution of the relevant F-theory Tate models
we classify the factorisable G_4-fluxes and match them with the set of
universal D5-tadpole free U(1)-fluxes in Type IIB. Where available, the global
version of the universal spectral cover flux corresponds to Type IIB gauge flux
associated with a massive diagonal U(1). In U(1)-restricted Tate models extra
massless abelian fluxes exist which are associated with specific linear
combinations of Type IIB fluxes. Key to a quantitative match between F-theory
and Type IIB is a proper treatment of the conifold singularity encountered in
the Sen limit of generic F-theory models. We also shed further light on the
brane recombination process relating generic and U(1)-restricted Tate models.Comment: 53 pages, 3 figures; v2: Refs added; v3: minor corrections to match
version published in JHE
Evaluation of the health-related quality of life of children in Schistosoma haematobium-endemic communities in Kenya: a cross-sectional study.
BACKGROUND: Schistosomiasis remains a global public health challenge, with 93% of the ~237 million infections occurring in sub-Saharan Africa. Though rarely fatal, its recurring nature makes it a lifetime disorder with significant chronic health burdens. Much of its negative health impact is due to non-specific conditions such as anemia, undernutrition, pain, exercise intolerance, poor school performance, and decreased work capacity. This makes it difficult to estimate the disease burden specific to schistosomiasis using the standard DALY metric.
METHODOLOGY/PRINCIPAL FINDINGS: In our study, we used Pediatric Quality of Life Inventory (PedsQL), a modular instrument available for ages 2-18 years, to assess health-related quality of life (HrQoL) among children living in a Schistosoma haematobium-endemic area in coastal Kenya. The PedsQL questionnaires were administered by interview to children aged 5-18 years (and their parents) in five villages spread across three districts. HrQoL (total score) was significantly lower in villages with high prevalence of S. haematobium (-4.0%, p<0.001) and among the lower socioeconomic quartiles (-2.0%, p<0.05). A greater effect was seen in the psychosocial scales as compared to the physical function scale. In moderate prevalence villages, detection of any parasite eggs in the urine was associated with a significant 2.1% (p<0.05) reduction in total score. The PedsQL reliabilities were generally high (Cronbach alphas ≥0.70), floor effects were acceptable, and identification of children from low socioeconomic standing was valid.
CONCLUSIONS/SIGNIFICANCE: We conclude that exposure to urogenital schistosomiasis is associated with a 2-4% reduction in HrQoL. Further research is warranted to determine the reproducibility and responsiveness properties of QoL testing in relation to schistosomiasis. We anticipate that a case definition based on more sensitive parasitological diagnosis among younger children will better define the immediate and long-term HrQoL impact of Schistosoma infection
Big-Data-Driven Materials Science and its FAIR Data Infrastructure
This chapter addresses the forth paradigm of materials research -- big-data
driven materials science. Its concepts and state-of-the-art are described, and
its challenges and chances are discussed. For furthering the field, Open Data
and an all-embracing sharing, an efficient data infrastructure, and the rich
ecosystem of computer codes used in the community are of critical importance.
For shaping this forth paradigm and contributing to the development or
discovery of improved and novel materials, data must be what is now called FAIR
-- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets
the stage for advances of methods from artificial intelligence that operate on
large data sets to find trends and patterns that cannot be obtained from
individual calculations and not even directly from high-throughput studies.
Recent progress is reviewed and demonstrated, and the chapter is concluded by a
forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W.
Andreoni), Springer 2018/201
Six-dimensional (1,0) effective action of F-theory via M-theory on Calabi-Yau threefolds
The six-dimensional effective action of F-theory compactified on a singular
elliptically fibred Calabi-Yau threefold is determined by using an M-theory
lift. The low-energy data are derived by comparing a circle reduction of a
general six-dimensional (1,0) gauged supergravity theory with the effective
action of M-theory on the resolved Calabi-Yau threefold. The derivation
includes six-dimensional tensor multiplets for which the (anti-) self-duality
constraints are imposed on the level of the five-dimensional action. The vector
sector of the reduced theory is encoded by a non-standard potential due to the
Green-Schwarz term in six dimensions. This Green-Schwarz term also contains
higher curvature couplings which are considered to establish the full map
between anomaly coefficients and geometry. F-/M-theory duality is exploited by
moving to the five-dimensional Coulomb branch after circle reduction and
integrating out massive vector multiplets and matter hypermultiplets. The
associated fermions then generate additional Chern-Simons couplings at
one-loop. Further couplings involving the graviphoton are induced by quantum
corrections due to excited Kaluza-Klein modes. On the M-theory side integrating
out massive fields corresponds to resolving the singularities of the Calabi-Yau
threefold, and yields intriguing relations between six-dimensional anomalies
and classical topology.Comment: 55 pages, v2: typos corrected, discussion of loop corrections
improve
- …
