2,124 research outputs found
Integrated Pre-Processing for Bayesian Nonlinear System Identification with Gaussian Processes
We introduce GP-FNARX: a new model for nonlinear system identification based
on a nonlinear autoregressive exogenous model (NARX) with filtered regressors
(F) where the nonlinear regression problem is tackled using sparse Gaussian
processes (GP). We integrate data pre-processing with system identification
into a fully automated procedure that goes from raw data to an identified
model. Both pre-processing parameters and GP hyper-parameters are tuned by
maximizing the marginal likelihood of the probabilistic model. We obtain a
Bayesian model of the system's dynamics which is able to report its uncertainty
in regions where the data is scarce. The automated approach, the modeling of
uncertainty and its relatively low computational cost make of GP-FNARX a good
candidate for applications in robotics and adaptive control.Comment: Proceedings of the 52th IEEE International Conference on Decision and
Control (CDC), Firenze, Italy, December 201
Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks
Multivariate time series forecasting is an important machine learning problem
across many domains, including predictions of solar plant energy output,
electricity consumption, and traffic jam situation. Temporal data arise in
these real-world applications often involves a mixture of long-term and
short-term patterns, for which traditional approaches such as Autoregressive
models and Gaussian Process may fail. In this paper, we proposed a novel deep
learning framework, namely Long- and Short-term Time-series network (LSTNet),
to address this open challenge. LSTNet uses the Convolution Neural Network
(CNN) and the Recurrent Neural Network (RNN) to extract short-term local
dependency patterns among variables and to discover long-term patterns for time
series trends. Furthermore, we leverage traditional autoregressive model to
tackle the scale insensitive problem of the neural network model. In our
evaluation on real-world data with complex mixtures of repetitive patterns,
LSTNet achieved significant performance improvements over that of several
state-of-the-art baseline methods. All the data and experiment codes are
available online.Comment: Accepted by SIGIR 201
Combination of statistical process control (SPC) methods and classification strategies for situation assessment of batch processes
Postprint (published version
Arquitectura i urbanisme a Girona durant el segle XVIII. Les propostes il·lustrades de Francisco de Zamora
Dones fortes del monestir de Sant Daniel i la música: Les benetes i l'orgue d'Anton Boscà (1740-1752)
- …
