539 research outputs found

    Modeling and hexahedral meshing of cerebral arterial networks from centerlines

    Full text link
    Computational fluid dynamics (CFD) simulation provides valuable information on blood flow from the vascular geometry. However, it requires extracting precise models of arteries from low-resolution medical images, which remains challenging. Centerline-based representation is widely used to model large vascular networks with small vessels, as it encodes both the geometric and topological information and facilitates manual editing. In this work, we propose an automatic method to generate a structured hexahedral mesh suitable for CFD directly from centerlines. We addressed both the modeling and meshing tasks. We proposed a vessel model based on penalized splines to overcome the limitations inherent to the centerline representation, such as noise and sparsity. The bifurcations are reconstructed using a parametric model based on the anatomy that we extended to planar n-furcations. Finally, we developed a method to produce a volume mesh with structured, hexahedral, and flow-oriented cells from the proposed vascular network model. The proposed method offers better robustness to the common defects of centerlines and increases the mesh quality compared to state-of-the-art methods. As it relies on centerlines alone, it can be applied to edit the vascular model effortlessly to study the impact of vascular geometry and topology on hemodynamics. We demonstrate the efficiency of our method by entirely meshing a dataset of 60 cerebral vascular networks. 92% of the vessels and 83% of the bifurcations were meshed without defects needing manual intervention, despite the challenging aspect of the input data. The source code is released publicly

    Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke

    Get PDF
    We address the medical image analysis issue of predicting the final lesion in stroke from early perfusion magnetic resonance imaging. The classical processing approach for the dynamical perfusion images consists in a temporal deconvolution to improve the temporal signals associated with each voxel before performing prediction. We demonstrate here the value of exploiting directly the raw perfusion data by encoding the local environment of each voxel as a spatio-temporal texture, with an observation scale larger than the voxel. As a first illustration for this approach, the textures are characterized with local binary patterns and the classification is performed using a standard support vector machine (SVM). This simple machine learning classification scheme demonstrates results with 95% accuracy on average while working only raw perfusion data. We discuss the influence of the observation scale and evaluate the interest of using post-processed perfusion data with this approach

    On the robustness of machine learning algorithms toward microfluidic distortions for cell classification via on-chip fluorescence microscopy

    Get PDF
    Single-cell imaging and sorting are critical technologies in biology and clinical applications. The power of these technologies is increased when combined with microfluidics, fluorescence markers, and machine learning. However, this quest faces several challenges. One of these is the effect of the sample flow velocity on the classification performances. Indeed, cell flow speed affects the quality of image acquisition by increasing motion blur and decreasing the number of acquired frames per sample. We investigate how these visual distortions impact the final classification task in a real-world use-case of cancer cell screening, using a microfluidic platform in combination with light sheet fluorescence microscopy. We demonstrate, by analyzing both simulated and experimental data, that it is possible to achieve high flow speed and high accuracy in single-cell classification. We prove that it is possible to overcome the 3D slice variability of the acquired 3D volumes, by relying on their 2D sum z-projection transformation, to reach an efficient real time classification with an accuracy of 99.4% using a convolutional neural network with transfer learning from simulated data. Beyond this specific use-case, we provide a web platform to generate a synthetic dataset and to investigate the effect of flow speed on cell classification for any biological samples and a large variety of fluorescence microscopes (https://www.creatis.insa-lyon.fr/site7/en/MicroVIP)

    Contrast quality control for segmentation task based on deep learning models—Application to stroke lesion in CT imaging

    Get PDF
    IntroductionAlthough medical imaging plays a crucial role in stroke management, machine learning (ML) has been increasingly used in this field, particularly in lesion segmentation. Despite advances in acquisition technologies and segmentation architectures, one of the main challenges of subacute stroke lesion segmentation in computed tomography (CT) imaging is image contrast.MethodsTo address this issue, we propose a method to assess the contrast quality of an image dataset with a ML trained model for segmentation. This method identifies the critical contrast level below which the medical-imaging model fails to learn meaningful content from images. Contrast measurement relies on the Fisher's ratio, estimating how well the stroke lesion is contrasted from the background. The critical contrast is found-thanks to the following three methods: Performance, graphical, and clustering analysis. Defining this threshold improves dataset design and accelerates training by excluding low-contrast images.ResultsApplication of this method to brain lesion segmentation in CT imaging highlights a Fisher's ratio threshold value of 0.05, and training validation of a new model without these images confirms this with similar results with only 60% of the training data, resulting in an almost 30% reduction in initial training time. Moreover, the model trained without the low-contrast images performed equally well with all images when tested on another database.DiscussionThis study opens discussion with clinicians concerning the limitations, areas for improvement, and strategies for enhancing datasets and training models. While the methodology was only applied to stroke lesion segmentation in CT images, it has the potential to be adapted to other tasks

    A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge

    Full text link
    Diffusion-weighted MRI (DWI) is essential for stroke diagnosis, treatment decisions, and prognosis. However, image and disease variability hinder the development of generalizable AI algorithms with clinical value. We address this gap by presenting a novel ensemble algorithm derived from the 2022 Ischemic Stroke Lesion Segmentation (ISLES) challenge. ISLES'22 provided 400 patient scans with ischemic stroke from various medical centers, facilitating the development of a wide range of cutting-edge segmentation algorithms by the research community. Through collaboration with leading teams, we combined top-performing algorithms into an ensemble model that overcomes the limitations of individual solutions. Our ensemble model achieved superior ischemic lesion detection and segmentation accuracy on our internal test set compared to individual algorithms. This accuracy generalized well across diverse image and disease variables. Furthermore, the model excelled in extracting clinical biomarkers. Notably, in a Turing-like test, neuroradiologists consistently preferred the algorithm's segmentations over manual expert efforts, highlighting increased comprehensiveness and precision. Validation using a real-world external dataset (N=1686) confirmed the model's generalizability. The algorithm's outputs also demonstrated strong correlations with clinical scores (admission NIHSS and 90-day mRS) on par with or exceeding expert-derived results, underlining its clinical relevance. This study offers two key findings. First, we present an ensemble algorithm (https://github.com/Tabrisrei/ISLES22_Ensemble) that detects and segments ischemic stroke lesions on DWI across diverse scenarios on par with expert (neuro)radiologists. Second, we show the potential for biomedical challenge outputs to extend beyond the challenge's initial objectives, demonstrating their real-world clinical applicability
    corecore