24,657 research outputs found
Intermittency in passive scalar advection
A Lagrangian method for the numerical simulation of the Kraichnan passive
scalar model is introduced. The method is based on Monte--Carlo simulations of
tracer trajectories, supplemented by a point-splitting procedure for coinciding
points. Clean scaling behavior for scalar structure functions is observed. The
scheme is exploited to investigate the dependence of scalar anomalies on the
scaling exponent of the advecting velocity field. The three-dimensional
fourth-order structure function is specifically considered.Comment: 4 pages, 5 figure
Graphene/Li-Ion battery
Density function theory calculations were carried out to clarify storage
states of Lithium (Li) ions in graphene clusters. The adsorption energy, spin
polarization, charge distribution, electronic gap, surface curvature and dipole
momentum were calculated for each cluster. Li-ion adsorbed graphene, doped by
one Li atom is spin polarized, so there would be different gaps for different
spin polarization in electrons. Calculation results demonstrated that a smaller
cluster between each two larger clusters is preferable, because it could
improve graphene Li-ion batteries; consequently, the most proper graphene anode
structure has been proposed.Comment: 19 pages, 7 figures, 1 tabl
A critical analysis of vacancy-induced magnetism in mono and bilayer graphene
The observation of intrinsic magnetic order in graphene and graphene-based
materials relies on the formation of magnetic moments and a sufficiently strong
mutual interaction. Vacancies are arguably considered the primary source of
magnetic moments. Here we present an in-depth density functional theory study
of the spin-resolved electronic structure of (monoatomic) vacancies in graphene
and bilayer graphene. We use two different methodologies: supercell
calculations with the SIESTA code and cluster-embedded calculations with the
ALACANT package. Our results are conclusive: The vacancy-induced extended
magnetic moments, which present long-range interactions and are capable of
magnetic ordering, vanish at any experimentally relevant vacancy concentration.
This holds for -bond passivated and un-passivated reconstructed
vacancies, although, for the un-passivated ones, the disappearance of the
magnetic moments is accompanied by a very large magnetic susceptibility. Only
for the unlikely case of a full -bond passivation, preventing the
reconstruction of the vacancy, a full value of 1 for the extended
magnetic moment is recovered for both mono and bilayer cases. Our results put
on hold claims of vacancy-induced ferromagnetic or antiferromagnetic order in
graphene-based systems, while still leaving the door open to -type
paramagnetism.Comment: Submitted to Phys. Rev B, 9 page
Scalar transport in compressible flow
Transport of scalar fields in compressible flow is investigated. The
effective equations governing the transport at scales large compared to those
of the advecting flow are derived by using multi-scale techniques. Ballistic
transport generally takes place when both the solenoidal and the potential
components of the velocity do not vanish, despite of the fact that it has zero
average value. The calculation of the effective ballistic velocity is
reduced to the solution of one auxiliary equation. An analytic expression for
is derived in some special instances, i.e. flows depending on a single
coordinate, random with short correlation times and slightly compressible
cellular flow. The effective mean velocity vanishes for velocity fields
which are either incompressible or potential and time-independent. For generic
compressible flow, the most general conditions ensuring the absence of
ballistic transport are isotropy and/or parity invariance. When vanishes
(or in the frame of reference moving with velocity ), standard diffusive
transport takes place. It is known that diffusion is always enhanced by
incompressible flow. On the contrary, we show that diffusion is depleted in the
presence of time-independent potential flow. Trapping effects due to potential
wells are responsible for this depletion. For time-dependent potential flow or
generic compressible flow, transport rates are enhanced or depleted depending
on the detailed structure of the velocity field.Comment: 27 pages, submitted to Physica
Identification of the Atomic Scale Structures of the Gold-Thiol Interfaces of Molecular Nanowires by Inelastic Tunneling Spectroscopy
We examine theoretically the effects of the bonding geometries at the
gold-thiol interfaces on the inelastic tunneling spectra of propanedithiolate
(PDT) molecules bridging gold electrodes and show that inelastic tunneling
spectroscopy combined with theory can be used to determine these bonding
geometries experimentally. With the help of density functional theory, we
calculate the relaxed geometries and vibrational modes of extended molecules
each consisting of one or two PDT molecules connecting two gold nanoclusters.
We formulate a perturbative theory of inelastic tunneling through molecules
bridging metal contacts in terms of elastic transmission amplitudes, and use
this theory to calculate the inelastic tunneling spectra of the gold-PDT-gold
extended molecules. We consider PDT molecules with both trans and gauche
conformations bound to the gold clusters at top, bridge and hollow bonding
sites. Comparing our results with the experimental data of Hihath et al. [Nano
Lett. 8, 1673 (2008)], we identify the most frequently realized conformation in
the experiment as that of trans molecules top-site bonded to both electrodes.
We find the switching from the 42 meV vibrational mode to the 46 meV mode
observed in the experiment to be due to the transition of trans molecules from
mixed top-bridge to pure top-site bonding geometries. Our results also indicate
that gauche molecular conformations and hollow site bonding did not contribute
significantly to the experimental inelastic tunneling spectra. For pairs of PDT
molecules connecting the gold electrodes in parallel we find total elastic
conductances close to twice those of single molecules bridging the contacts
with similar bonding conformations and small splittings of the vibrational mode
energies for the modes that are the most sensitive to the molecule-electrode
bonding geometries.Comment: 14 pages, 8 figures, 1 table. arXiv admin note: significant text
overlap with arXiv:1103.2378;
http://jcp.aip.org/resource/1/jcpsa6/v136/i1/p014703_s
Unusual conductance of polyyne-based molecular wires
We report a full self-consistent ab initio calculation of the current-voltage
curve and the conductance of thiolate capped polyynes in contact with gold
electrodes. We find the conductance of polyynes an order of magnitude larger
compared with other conjugated oligomers. The reason lies in the position of
the Fermi level deep in the HOMO related resonance. With the conductance weakly
dependent on the applied bias and almost independent of the length of the
molecular chain, polyynes appear as nearly perfect molecular wires.Comment: 4 pages, 5 figures, 3 table
Passive Scalar Structures in Supersonic Turbulence
We conduct a systematic numerical study of passive scalar structures in
supersonic turbulent flows. We find that the degree of intermittency in the
scalar structures increases only slightly as the flow changes from transonic to
highly supersonic, while the velocity structures become significantly more
intermittent. This difference is due to the absence of shock-like
discontinuities in the scalar field. The structure functions of the scalar
field are well described by the intermittency model of She and L\'{e}v\^{e}que
[Phys. Rev. Lett. 72, 336 (1994)], and the most intense scalar structures are
found to be sheet-like at all Mach numbers.Comment: 4 pages, 3 figures, to appear in PR
Generation of non-Gaussian statistics and coherent structures in ideal magnetohydrodynamics
Spectral method simulations of ideal magnetohydrodynamics are used to investigate production of coherent small scale structures, a feature of fluid models that is usually associated with inertial range signatures of nonuniform dissipation, and the associated emergence of non-Gaussian statistics. The near-identical growth of non-Gaussianity in ideal and nonideal cases suggests that generation of coherent structures and breaking of self-similarity are essentially ideal processes. This has important implications for understanding the origin of intermittency in turbulence
- …
