1,151 research outputs found

    On the UCC Revision Process: A Reply to Dean Scott

    Full text link

    Commenting on "Purpose" in the Uniform Commercial Code

    Get PDF

    Is Austria's Balanced Budget Stable?

    Full text link

    Commercial Codification as Negotiation

    Full text link

    Energy Spectrum of Quasi-Geostrophic Turbulence

    Full text link
    We consider the energy spectrum of a quasi-geostrophic model of forced, rotating turbulent flow. We provide a rigorous a priori bound E(k) <= Ck^{-2} valid for wave numbers that are smaller than a wave number associated to the forcing injection scale. This upper bound separates this spectrum from the Kolmogorov-Kraichnan k^{-{5/3}} energy spectrum that is expected in a two-dimensional Navier-Stokes inverse cascade. Our bound provides theoretical support for the k^{-2} spectrum observed in recent experiments

    Electromagnetic Momentum in Dispersive Dielectric Media

    Full text link
    When the effects of dispersion are included, neither the Abraham nor the Minkowski expression for electromagnetic momentum in a dielectric medium gives the correct recoil momentum for absorbers or emitters of radiation. The total momentum density associated with a field in a dielectric medium has three contributions: (i) the Abraham momentum density of the field, (ii) the momentum density associated with the Abraham force, and (iii) a momentum density arising from the dispersive part of the response of the medium to the field, the latter having a form evidently first derived by D.F. Nelson [Phys. Rev. A 44, 3985 (1991)]. All three contributions are required for momentum conservation in the recoil of an absorber or emitter in a dielectric medium. We consider the momentum exchanged and the force on a polarizable particle (e.g., an atom or a small dielectric sphere) in a host dielectric when a pulse of light is incident upon it, including the dispersion of the dielectric medium as well as a dispersive component in the response of the particle to the field. The force can be greatly increased in slow-light dielectric media.Comment: 9 pages. To be published by Optics Communication
    corecore