915 research outputs found

    Microwave soft x-ray microscopy for nanoscale magnetization dynamics in the 5-10 GHz frequency range

    Full text link
    We present a scanning transmission x-ray microscopy setup combined with a novel microwave synchronization scheme in order to study high frequency magnetization dynamics at synchrotron light sources. The sensitivity necessary to detect small changes of the magnetization on short time scales and nanometer spatial dimensions is achieved by combination of the developed excitation mechanism with a single photon counting electronics that is locked to the synchrotron operation frequency. The required mechanical stability is achieved by a compact design of the microscope. Our instrument is capable of creating direct images of dynamical phenomena in the 5-10 GHz range, with 35 nm resolution. When used together with circularly polarized x-rays, the above capabilities can be combined to study magnetic phenomena at microwave frequencies, such as ferromagnetic resonance (FMR) and spin waves. We demonstrate the capabilities of our technique by presenting phase resolved images of a 6 GHz nanoscale spin wave generated by a spin torque oscillator, as well as the uniform ferromagnetic precession with ~0.1 deg amplitude at 9 GHz in a micrometer-sized cobalt strip.Comment: 9 pages, 7 figure

    DFT-D3 study of molecular N2 and H2 activation on Co3Mo3N surfaces

    Get PDF
    Cobalt molybdenum nitride (Co3Mo3N) is one of the most active catalysts for ammonia synthesis, although the atomistic details of the reaction mechanism are currently unknown. We present a dispersion-corrected (D3) DFT study of the adsorption and activation of molecular nitrogen and hydrogen on Co3Mo3N-(111) surfaces to identify possible activation sites for ammonia synthesis. H2 was found to adsorb both molecularly on the Mo3N framework and dissociatively on Co8 clusters or Mo3 clusters that were exposed due to N-vacancies. We find that there are two possible activation sites for N2 where both N2 and H2 can coadsorb. The first is a Mo3 triangular cluster that resides at 3f nitrogen vacancies, and the second is a surface cavity where N2 is activated by a Co8 cluster, the second being a more efficient activation site. N2 was found to adsorb in three adsorption configurations: side-on, end-on, and an unusual tilt end-on (155°) configuration, and the existence of these three adsorption configurations is explained via MP2 calculations and the sphere-in-contact model

    Condensation of free volume in structures of nematic and hexatic liquid crystals

    Get PDF
    Eight novel liquid crystalline materials were prepared containing highly branched terminal chains, either 2,4,4-trimethylpentyl or 3,5,5-trimethylhexyl. All materials exhibit nematic mesophases, with additional smectic (Sm) C, hexatic B and SmI phases for certain homologues. Analysis by small- and wide-angle X-ray scattering reveals continual build-up of the correlation length within the nematic phases, where we also observe splitting of the small angle peak into four lobes, indicating pretransitional Sm fluctuations. Connoscopy confirms the nematic phase to be uniaxial and optically positive. We observe that in the solid state, the molecules exist as staggered antiparallel pairs as a consequence of the sterically demanding bulky terminal group, and this would also appear to manifest in the hexatic B phase, where the layer spacing was found to be greater than the molecular length. If true, this is an example of pair formation driven by sterics rather than dipole–dipole interactions and suggests that reentrant systems driven purely by steric frustration may be found

    Position Measurements with Micro-Channel Plates and Transmission lines using Pico-second Timing and Waveform Analysis

    Get PDF
    The anodes of Micro-Channel Plate devices are coupled to fast transmission lines in order to reduce the number of electronics readout channels, and can provide two-dimension position measurements using two-ends delay timing. Tests with a laser and digital waveform analysis show that resolutions of a few hundreds of microns along the transmission line can be reached taking advantage of a few pico-second timing estimation. This technique is planned to be used in Micro-channel Plate devices integrating the transmission lines as anodes

    Astrophysical turbulence modeling

    Full text link
    The role of turbulence in various astrophysical settings is reviewed. Among the differences to laboratory and atmospheric turbulence we highlight the ubiquitous presence of magnetic fields that are generally produced and maintained by dynamo action. The extreme temperature and density contrasts and stratifications are emphasized in connection with turbulence in the interstellar medium and in stars with outer convection zones, respectively. In many cases turbulence plays an essential role in facilitating enhanced transport of mass, momentum, energy, and magnetic fields in terms of the corresponding coarse-grained mean fields. Those transport properties are usually strongly modified by anisotropies and often completely new effects emerge in such a description that have no correspondence in terms of the original (non coarse-grained) fields.Comment: 88 pages, 26 figures, published in Reports on Progress in Physic

    Limits for Recombination in a Low Energy Loss Organic Heterojunction

    Get PDF
    Donor–acceptor organic solar cells often show high quantum yields for charge collection, but relatively low open-circuit voltages (VOC_{OC}) limit power conversion efficiencies to around 12%. We report here the behavior of a system, PIPCP:PC61_{61}BM, that exhibits very low electronic disorder (Urbach energy less than 27 meV), very high carrier mobilities in the blend (field-effect mobility for holes >102^{-2} cm2^{2} V1^{-1} s1^{-1}), and a very low driving energy for initial charge separation (50 meV). These characteristics should give excellent performance, and indeed, the VOC_{OC} is high relative to the donor energy gap. However, we find the overall performance is limited by recombination, with formation of lower-lying triplet excitons on the donor accounting for 90% of the recombination. We find this is a bimolecular process that happens on time scales as short as 100 ps. Thus, although the absence of disorder and the associated high carrier mobility speeds up charge diffusion and extraction at the electrodes, which we measure as early as 1 ns, this also speeds up the recombination channel, giving overall a modest quantum yield of around 60%. We discuss strategies to remove the triplet exciton recombination channel.SMM, RHF, MKR, SAA, and JLB acknowledge support from the KAUST Competitive Research Grant Program. MKR, SAA, and JLB also acknowledge generous support of their work by KAUST and the Office of Naval Research Global (Award N62909­15­1­2003); they thank the KAUST IT Research Computing Team and Supercomputing Laboratory for providing computational and storage resources. NAR, MW, TQN, and GCB acknowledge support from the Department of the Navy, Office of Naval Research (Award Nos. N00014-14-1-0580 and N00014-16-1-25200. AS would like to acknowledge the funding and support from the India-UK APEX project. HLS acknowledges support from the Winton Programme for the Physics of Sustainability. MN and HS gratefully acknowledge financial support from the Engineering and Physical Sciences Research Council though a Programme Grant (EP/M005141/1)

    Density functional theory studies of MTSL nitroxide side chain conformations attached to an activation loop

    Get PDF
    A quantum-mechanical (QM) method rooted on density functional theory (DFT) linked to the Stochastic Liouville equation (SLE) in the Fokker Planck (FP) form has been employed for the first time to sample the methane-thiosulfonate spin label (MTSL) conformational space attached to the Aurora-A kinase activation loop and to calculate the EPR spectrum. The features of the calculated energy surface allowed us to describe the system in a limited number of rotamers stabilized by interactions of the MTSL side chain and neighbouring residues. The relevant magnetic parameters and the electron paramagnetic resonance (EPR) spectrum were subsequently calculated from the trajectories of the spin probe in the protein environment. The comparison between theoretical and experimental continuous wave (CW) EPR spectra revealed some small differences in the EPR line shape which arises from the combinations of g- and A-values obtained from the conformations selected. The theoretical approach adopted in this work can be used to recognise the contribution of MTSL rotamers to the EPR spectrum in order to help extract structural/dynamics properties of protein from the experimental data

    Mechanosensory interactions drive collective behaviour in Drosophila.

    Get PDF
    Collective behaviour enhances environmental sensing and decision-making in groups of animals. Experimental and theoretical investigations of schooling fish, flocking birds and human crowds have demonstrated that simple interactions between individuals can explain emergent group dynamics. These findings indicate the existence of neural circuits that support distributed behaviours, but the molecular and cellular identities of relevant sensory pathways are unknown. Here we show that Drosophila melanogaster exhibits collective responses to an aversive odour: individual flies weakly avoid the stimulus, but groups show enhanced escape reactions. Using high-resolution behavioural tracking, computational simulations, genetic perturbations, neural silencing and optogenetic activation we demonstrate that this collective odour avoidance arises from cascades of appendage touch interactions between pairs of flies. Inter-fly touch sensing and collective behaviour require the activity of distal leg mechanosensory sensilla neurons and the mechanosensory channel NOMPC. Remarkably, through these inter-fly encounters, wild-type flies can elicit avoidance behaviour in mutant animals that cannot sense the odour--a basic form of communication. Our data highlight the unexpected importance of social context in the sensory responses of a solitary species and open the door to a neural-circuit-level understanding of collective behaviour in animal groups
    corecore