37 research outputs found
The Effect of Fact-Checking on Elites: A Field Experiment on U.S. State Legislators
© 2014, Midwest Political Science Association. Does external monitoring improve democratic performance? Fact-checking has come to play an increasingly important role in political coverage in the United States, but some research suggests it may be ineffective at reducing public misperceptions about controversial issues. However, fact-checking might instead help improve political discourse by increasing the reputational costs or risks of spreading misinformation for political elites. To evaluate this deterrent hypothesis, we conducted a field experiment on a diverse group of state legislators from nine U.S. states in the months before the November 2012 election. In the experiment, a randomly assigned subset of state legislators was sent a series of letters about the risks to their reputation and electoral security if they were caught making questionable statements. The legislators who were sent these letters were substantially less likely to receive a negative fact-checking rating or to have their accuracy questioned publicly, suggesting that fact-checking can reduce inaccuracy when it poses a salient threat
Urban Stream Burial Increases Watershed-Scale Nitrate Export
Nitrogen (N) uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams) can increase watershed-scale N retention
Effects of urban stream burial on organic matter dynamics and reach scale nitrate retention
Nitrogen (N) retention in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial suppresses the capacity of streams to retain nitrate (NO3 −) by eliminating primary production, reducing respiration rates and organic matter availability, and increasing specific discharge. We tested these predictions by measuring whole-stream NO3 − removal rates using 15NO3 − isotope tracer releases in paired buried and open reaches in three streams in Cincinnati, Ohio (USA) during four seasons. Nitrate uptake lengths were 29 times greater in buried than open reaches, indicating that buried reaches were less effective at retaining NO3 − than open reaches. Burial suppressed NO3 − retention through a combination of hydrological and biological processes. The channel shape of two of the buried reaches increased specific discharge which enhanced NO3 − transport from the channel, highlighting the relationship between urban infrastructure and ecosystem function. Uptake lengths in the buried reaches were further lengthened by low stream biological NO3 − demand, as indicated by NO3 − uptake velocities 17-fold lower than that of the open reaches. We also observed differences in the periphyton enzyme activity between reaches, indicating that the effects of burial cascade from the microbial to the ecosystem scale. Our results suggest that stream restoration practices involving “daylighting” buried streams have the potential to increase N retention. Further work is needed to elucidate the impacts of stream burial on ecosystem functions at the larger stream network scale
