4,918 research outputs found

    Lower variability of radionuclide activities in upland dairy products compared to soils and vegetation: Implication for environmental survey

    Get PDF
    Contamination of the environment by radionuclides is usually estimated using soil and grass sampling. However, radionuclides are often not homogeneously distributed in soils. In the alpine Mercantour region (Western Alps, France) a large heterogeneity in Chernobyl 137Cs deposition has been previously observed. Here we report additional 137Cs results together with new 90Sr and Pu data for soil, grass, milk, and cheese samples. The results show that radioisotopes from nuclear weapons tests fallout are more homogeneously distributed than Chernobyl 137Cs. Further, we observe that the 137Cs and 90Sr contents are less variable in milk samples than in grass or soil samples. This can be attributed to the homogenization effect of cow vagrancy during grazing. Hence milk seems to be a more robust sample than soil or grass to evaluate the extent of contamination on a regional scale. We explore this idea by comparing own unpublished 90Sr results and 90Sr results from the literature to establish the relationship between altitude of grazing and contamination of soil and milk for Western Europe. There is a significant positive correlation between soil contamination and altitude and an even closer correlation between milk 90Sr activity (A) and altitude (h): A = A0 + ek·h where A0 is the expected activity of milk sampled at sea level (A0 = 0.064 ± 0.014 Bq g-1 Ca) and h is the altitude of grazing, k being a constant (k = 0.95 × 10-3 ± 0.11 × 10-3 m-1 Bq g-1 Ca). The fact that there is less scattering in the relationship for the 90Srmilk-altitude than for 90Srsoil-altitude suggests, again, that milk is a well-suited sample for environmental survey. The relationship between the altitude of grazing and the 90Sr content of milk and cheese can also be used to assess the authenticity of dairy products. © 2006 Elsevier Ltd. All rights reserved

    Where Fail-Safe Default Logics Fail

    Full text link
    Reiter's original definition of default logic allows for the application of a default that contradicts a previously applied one. We call failure this condition. The possibility of generating failures has been in the past considered as a semantical problem, and variants have been proposed to solve it. We show that it is instead a computational feature that is needed to encode some domains into default logic

    Temperatures and optical depths of Saturn's rings and a brightness temperature for Titan

    Get PDF
    The Pioneer Saturn infrared radiometer viewed Saturn's rings at 20- and 45-µm wavelength under several conditions of illumination. The data are analyzed to infer radial locations of major ring boundaries, temperatures and temperature gradients, and normal optical depths. Error bounds on the above inferred quantities are given. Most ring boundaries are defined to ±0.01 R_s(1 R_s≡6 × 10^4 km) and are in good agreement with those inferred from the imaging photopolarimeter experiment. Temperatures generally decrease with radial distance from the planet. A significant temperature gradient exists from the colder north (unilluminated) side of the rings to the warmer south side. The gradient appears to be steepest on the south side. Ring optical depths are greater than some previously published values and are approximately 0.1 for the Cassini division and the C ring. In addition, the C ring optical depth decreases towards the planet. The temperature drop during eclipse is ≳10 K, implying low thermal inertia for the ring particles. Titan's 45-µm brightness temperature is 75±5 K, in good agreement with earth-based observations

    Speciation and Bioavailability Measurements of Environmental Plutonium Using Diffusion in Thin Films.

    Get PDF
    The biological uptake of plutonium (Pu) in aquatic ecosystems is of particular concern since it is an alpha-particle emitter with long half-life which can potentially contribute to the exposure of biota and humans. The diffusive gradients in thin films technique is introduced here for in-situ measurements of Pu bioavailability and speciation. A diffusion cell constructed for laboratory experiments with Pu and the newly developed protocol make it possible to simulate the environmental behavior of Pu in model solutions of various chemical compositions. Adjustment of the oxidation states to Pu(IV) and Pu(V) described in this protocol is essential in order to investigate the complex redox chemistry of plutonium in the environment. The calibration of this technique and the results obtained in the laboratory experiments enable to develop a specific DGT device for in-situ Pu measurements in freshwaters. Accelerator-based mass-spectrometry measurements of Pu accumulated by DGTs in a karst spring allowed determining the bioavailability of Pu in a mineral freshwater environment. Application of this protocol for Pu measurements using DGT devices has a large potential to improve our understanding of the speciation and the biological transfer of Pu in aquatic ecosystems

    Calibration of an HPGe detector and self-attenuation correction for Pb-210: Verification by alpha spectrometry of Po-210 in environmental samples

    Get PDF
    In this work the calibration of an HPGe detector for Pb-210 measurement is realised by a liquid standard source and the determination of this radionuclide in solid environmental samples by gamma spectrometry takes into account a correction factor for self-attenuation of its 46.5 keV line. Experimental, theoretical and Monte Carlo investigations are undertaken to evaluate self-attenuation for cylindrical sample geometry. To validate this correction factor (at equilibrium with Po-210 Pb-210) alpha spectrometry procedure using microwave acid digestion under pressure is developed and proposed. The different self-attenuation correction methods are in coherence, and corrected Pb-210 activities are in good agreement with the results of Po-210. Finally, self-attenuation corrections are proposed for environmental solid samples whose density ranges between 0.8 and 1.4 g/cm(3) and whose mass attenuation coefficient is around 0.4 cm(2)/g. (C) 2007 Elsevier B.V. All rights reserved

    The photochemistry of carbon monoxide in the stratosphere and mesosphere evaluated from observations by the Microwave Limb Sounder on the Aura satellite

    Get PDF
    The photochemical production and loss rates for carbon monoxide (CO) in the stratosphere and mesosphere are evaluated using measurements from the Aura Microwave Limb Sounder (MLS) and the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS). The distributions of reactive trace gases involved in the photochemistry of CO, including OH, CH4, O(D-1), Cl, as well as temperatures for calculating reaction rates, are either directly observed or constrained from observations. We map the CO net production and loss as a function of pressure (10-0.02 hPa, about 30-75 km altitude), latitude (approximately +/- 70 degrees), and season. The results indicate that photochemical loss dominates over production for nearly all conditions considered here. A minimum photochemical loss lifetime of about 10 days occurs near the 2 hPa pressure level, and it follows the region of maximum sunlight exposure. At high latitudes during winter, the CO lifetime is generally longer than 30 days. Time scales become much shorter in spring, however, when CO lifetimes can be 15-20 days poleward of 60 degrees latitude in the upper stratosphere. On the basis of these results, CO is a suitable tracer during autumn to spring above the 0.1 hPa pressure level but not in the upper stratosphere near 1 hPa.</p

    Determining 241Pu in environmental samples: case studies in alpine soils

    Get PDF
    A procedure was developed for determining 241Pu activity in environmental samples. This beta emitter isotope of plutonium was measured by ultra low level liquid scintillation, after several separation and purification steps that involved the use of a highly selective extraction chromatographic resin (Eichrom-TEVA). Due to the lack of reference material for 241Pu, the method was nevertheless validated using four IAEA reference sediments with information values for 241Pu. Next, the method was used to determine the 241Pu activity in alpine soils of Switzerland and France. The 241Pu/239,240Pu and 238Pu/239,240Pu activity ratios confirmed that Pu contamination in the tested alpine soils originated mainly from global fallout from nuclear weapon tests conducted in the fifties and sixties. Estimation of the date of the contamination, using the 241Pu/241Am age-dating method, further confirmed this origin. However, the 241Pu/241Am dating method was limited to samples where Pu-Am fractionation was insignificant. If any, the contribution of the Chernobyl accident is negligibl

    A Global Climatology of Tropospheric and Stratospheric Ozone Derived from Aura OMI and MLS Measurements

    Get PDF
    A global climatology of tropospheric and stratospheric column ozone is derived by combining six years of Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) ozone measurements for the period October 2004 through December 2010. The OMI/MLS tropospheric ozone climatology exhibits large temporal and spatial variability which includes ozone accumulation zones in the tropical south Atlantic year-round and in the subtropical Mediterranean! Asia region in summer months. High levels of tropospheric ozone in the northern hemisphere also persist in mid-latitudes over the eastern North American and Asian continents extending eastward over the Pacific Ocean. For stratospheric ozone climatology from MLS, largest ozone abundance lies in the northern hemisphere in the latitude range 70degN-80degN in February-April and in the southern hemisphere around 40degS-50degS during months August-October. The largest stratospheric ozone abundances in the northern hemisphere lie over North America and eastern Asia extending eastward across the Pacific Ocean and in the southern hemisphere south of Australia extending eastward across the dateline. With the advent of many newly developing 3D chemistry and transport models it is advantageous to have such a dataset for evaluating the performance of the models in relation to dynamical and photochemical processes controlling the ozone distributions in the troposphere and stratosphere

    Validation of Aura Microwave Limb Sounder HCl measurements

    Get PDF
    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) aboard the Aura satellite has provided daily global HCl profiles since August 2004. We provide a characterization of the resolution, random and systematic uncertainties, and known issues for the version 2.2 MLS HCl data. The MLS sampling allows for comparisons with many (similar to 1500 to more than 3000) closely matched profiles from the Halogen Occultation Experiment (HALOE) and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). These data sets provide HCl latitudinal distributions that are, overall, very similar to those from (coincident) MLS profiles, although there are some discrepancies in the upper stratosphere between the MLS and HALOE gradients. As found in previous work, MLS and ACE HCl profiles agree very well (within similar to 5%, on average), but the MLS HCl abundances are generally larger (by 10-20%) than HALOE HCl. The bias versus HALOE is unlikely to arise mostly from MLS, as a similar systematic bias (of order 15%) is not observed between average MLS and balloon-borne measurements of HCl, obtained over Fort Sumner, New Mexico, in 2004 and 2005. At the largest pressure (147 hPa) for MLS HCl, a high bias (similar to 0.2 ppbv) is apparent in analyses of low to midlatitude data versus in situ aircraft chemical ionization mass spectrometry (CIMS) HCl measurements from the Aura Validation Experiment (AVE) campaigns in 2004, 2005, and 2006; this bias is also observed in comparisons of MLS and aircraft HCl/O-3 correlations. Good agreement between MLS and CIMS HCl is obtained at 100 to 68 hPa. The recommended pressure range for MLS HCl is from 100 to 0.15 hPa.</p
    corecore