6,048 research outputs found

    Unsteady two dimensional airloads acting on oscillating thin airfoils in subsonic ventilated wind tunnels

    Get PDF
    The numerical calculation of unsteady two dimensional airloads which act upon thin airfoils in subsonic ventilated wind tunnels was studied. Neglecting certain quadrature errors, Bland's collocation method is rigorously proved to converge to the mathematically exact solution of Bland's integral equation, and a three way equivalence was established between collocation, Galerkin's method and least squares whenever the collocation points are chosen to be the nodes of the quadrature rule used for Galerkin's method. A computer program displayed convergence with respect to the number of pressure basis functions employed, and agreement with known special cases was demonstrated. Results are obtained for the combined effects of wind tunnel wall ventilation and wind tunnel depth to airfoil chord ratio, and for acoustic resonance between the airfoil and wind tunnel walls. A boundary condition is proposed for permeable walls through which mass flow rate is proportional to pressure jump

    Numerical equation of state and other scaling functions from an improved three-dimensional Ising model

    Full text link
    We study an improved three-dimensional Ising model with external magnetic field near the critical point by Monte Carlo simulations. From our data we determine numerically the universal scaling functions of the magnetization, that is the equation of state, of the susceptibility and of the correlation length. In order to normalize the scaling functions we calculate the critical amplitudes of the three observables on the critical line, the phase boundary and the critical isochore. These amplitudes lead to the universal ratios C^+/C^-=4.756(28), R_{chi}=1.723(13), Q_c=0.326(3) and Q_2=1.201(10). We find excellent agreement of the data with the parametric representation of the asymptotic equation of state as found by field theory methods. The comparison of the susceptibility data to the corresponding scaling function shows a marginal difference in the symmetric phase, which can be explained by the slightly different value for R_{chi} used in the parametrization. The shape of the correlation-length-scaling function is similar to the one of the susceptibility, as expected from earlier parametrizations. The peak positions of the two scaling functions are coinciding within the error bars.Comment: 27 pages, 14 Ps-figures, Latex2e, 10 pages added, including the scaling function of the correlation length, to appear in Nucl. Phys.

    Socialisation in the Age of New Media

    Get PDF
    Media education is a comparatively young specialisation within educational science. It acts on the assumption that in modern (or postmodern) societies human's relation to the world is largely mediated by technical media. To act pedagogically therefore has to be conceived and understood as acting in a world shaped by information and communication technologies. Based on this media education addresses three different problems. First it tries to analyse and critically reflect on socio-cultural forms and practices of media usage in order to assess the social as well as individual relevance of technically mediated perception and communication. Second it tries do develop scientifically founded concepts for the practice of media education in order to foster people's media skills and media literacy. Third it tries to develop concepts for media didactics, that is for a methodical application of technical media in order to support teaching and learning processes

    Lamb Wave (A(0) Mode) Scattering Directionality at Defects

    Get PDF
    Localized and distributed guided ultrasonic waves array systems offer an efficient way for the structural health monitoring of large structures. The detection sensitivity for fatigue cracks depends on the orientation of the crack relative to the location of the sensor elements. Crack-like defects have a directionality pattern of the scattered field depending on the angle of the incident wave relative to the defect orientation and on the ratio of the defect depth and length to the wavelength. From FE simulations it has been shown that for cracks and notches almost no energy is scattered in certain directions from the defect, i.e., the data processing algorithm must take into account that for some transducer combinations no change in the signal even for a significant defect will be detected. The scattered wave field directionality pattern for an incident low frequency A0 Lamb wave mode was predicted from 3D Finite Element simulations and verified from experimental measurements at machined part-through and through-thickness notches using a laser interferometer. Good agreement was found and the directionality pattern can be predicted accurately. The amplitude of the scattered wave was quantified for a systematic variation of the angle of the incident wave relative to the defect orientation, the defect depth, and the ratio of the characteristic defect size to the wavelength. Based on these results the detection sensitivity for crack-like defects in plate structures using guided wave sensor arrays can be quantified

    Two dimensional aerodynamic interference effects on oscillating airfoils with flaps in ventilated subsonic wind tunnels

    Get PDF
    The numerical computation of unsteady airloads acting upon thin airfoils with multiple leading and trailing-edge controls in two-dimensional ventilated subsonic wind tunnels is studied. The foundation of the computational method is strengthened with a new and more powerful mathematical existence and convergence theory for solving Cauchy singular integral equations of the first kind, and the method of convergence acceleration by extrapolation to the limit is introduced to analyze airfoils with flaps. New results are presented for steady and unsteady flow, including the effect of acoustic resonance between ventilated wind-tunnel walls and airfoils with oscillating flaps. The computer program TWODI is available for general use and a complete set of instructions is provided

    Wandel der Stromversorgung und räumliche Verteilungswirkungen

    Full text link

    The bending strength of tablets with a breaking line—Comparison of the results of an elastic and a "brittle cracking" finite element model with experimental findings

    Get PDF
    The aim of this work was to ascertain the influence of the position of the breaking line of bevel-edged tablets in a three-point bending test. Two different brands of commercially available, flat-round, bevel-edged tablets with a single central breaking line were studied. Breaking line positions tested, relative to the upper loading roll, were 0°, 22.5°, 45°, 67.5° and 90°. The breaking line faced either up- or downwards during the test. The practical results were compared with FEM results simulating similar test configurations. Tablets failed mainly across the failure plane, resulting in two tablet halves. An exception to this was found for tablets where the breaking line faced down and was positioned at an angle of 22.5° relative to the loading plane. Here the crack followed the breaking line in the centre of the tablets and only diverged towards the loading plane position at the edges of the tablets. The breaking line facing upwards resulted in a significantly higher tensile strength of the tablets compared to it facing downwards. However, with one exception, the orientation of the breaking line relative to the loading plane appeared not to affect the tensile strength values. A fully elastic FEM model indicated that both the position of the breaking line relative to the loading plane and as to whether the breaking line faced up- or downwards during the bending test would result in considerably different failure loads during practical experiments. The results also suggested that regardless of the breaking line position, when it is facing down crack propagation should start at the outer edges propagating towards the midpoint of the discs until failure occurs. Failure should hence always result in equal tablet halves, whereby the failure plane should coincide with the loading plane. Neither predictions fully reflected the practical behaviour of the tablets. Using a brittle cracking FEM model significantly larger tensile stresses for tablets with the breaking line positioned downwards at 0° or 22.5° relative to the loading plane were still predicted, but the differences between model and experimental values was greatly reduced. The remaining differences are more likely due to the inadequacy of the equation available to calculate the experimental tensile strength values. This equation cannot account for the presence of a breaking line and overestimates the thickness of the loading plane by the depth of the breaking line when in 0° or 22.5° position. If the depth of the breaking line is taken into account, the model predictions and the experimental findings are comparable. Also, in the brittle cracking FEM simulations the predicted crack propagation patterns were similar to those found in the experiments, and the model stress distributions across the lower surfaces were much more homogeneous and streamlined parallel to the loading plane. The brittle cracking model hence reflected the practicalities of the bending test more closely. The findings suggested that with the breaking line facing down fracture should always start in the centre of a tablet at its lower surface, initiated by the breaking line. Due to simultaneous development of larger stresses along the y-axis the tablet should still break into two equal halves along the loading plane, unless the position of the breaking line relative to the loading plane was 22.5°. In this case the tablet would fail by a mixed process, whereby failure would occur mainly along the breaking line, but due to simultaneous crack formation at the lower surface close to the bevel edge parallel to the loading plane the final breaking pattern would deviate from the breaking line about half-way from its centre, as seen in the practical experiments
    corecore