8,362 research outputs found

    Broad band time-resolved E_{p,i}--L_{iso} correlation in GRBs

    Get PDF
    We report results of a systematic study of the broad band (2--2000 keV) time resolved prompt emission spectra of a sample of gamma-ray bursts (GRBs) detected with both Wide Field Cameras on board the \sax\ satellite and the \batse\ experiment on board CGRO. In this first paper, we study the time-resolved dependence of the intrinsic peak energy Ep,iE_{p,i} of the EF(E)E F(E) spectrum on the corresponding isotropic bolometric luminosity LisoL_{\rm iso}. The Ep,iE_{p,i}--LisoL_{\rm iso} relation or the equivalent relation between Ep,iE_{p,i} and the bolometric released energy EisoE_{iso}, derived using the time averaged spectra of long GRBs with known redshift, is well established, but its physical origin is still a subject of discussion. In addition, some authors maintain that these relations are the result of instrumental selection effects. We find that not only a relation between the measured peak energy EpE_p and the corresponding energy flux, but also a strong Ep,iE_{p,i} versus LisoL_{\rm iso} correlation are found within each burst and merging together the time resolved data points from different GRBs. We do not expect significant instrumental selection effects that can affect the obtained results, apart from the fact that the GRBs in our sample are sufficiently bright to perform a time-resolved spectroscopy and that they have known redshift. If the fundamental physical process that gives rise to the GRB phenomenon does not depend on its brightness, we conclude that the found Ep,iE_{p,i} versus LisoL_{\rm iso} correlation within each GRB is intrinsic to the emission process, and that the correlations discovered by Amati et al. and Yonetoku et al. are likely not the result of selection effects. We also discuss the properties of the correlations found.Comment: 27 pages,4 tables, 7 figure, accepted for publication in The Astrophysical Journa

    An upscattering spectral formation model for the prompt emission of Gamma-Ray Bursts

    Full text link
    We propose a model for the spectral formation of Gamma Ray Burst (GRB) prompt emission, where the phenomenological Band's function is usually applied to describe the GRB prompt emission. We suggest that the GRB prompt emission is mainly a result of two upscattering processes. The first process is the Comptonization of relatively cold soft photons of the star off electrons of a hot shell of plasma of temperature T_e of the order of 10^{9} K (or kT_e~100 keV) that moves sub-relativistically with the bulk velocity V_b substantially less than the speed of light c. In this phase, the Comptonization parameter Y is high and the interaction between a blackbody-like soft seed photon population and hot electrons leads to formation of a saturated Comptonization spectrum modified by the sub-relativistic bulk outflow. The second process is an upscattering of the previously Comptonized spectrum by the plasma outflow once it becomes relativistic. This process gives rise to the high-energy power-law component above the peak in the EF(E)-diagram where F(E) is the energy flux. The latter process can be described by a convolution of the Comptonized spectrum with a broken-power-law Green function. Possible physical scenarios for this second upscattering process are discussed. In the framework of our model, we give an interpretation of the Amati relation between the intrinsic spectral peak photon energy and radiated energy or luminosity, and we propose a possible explanation of the GRB temporal variability.Comment: 27 pages, 8 figures, accepted for publication in the Astrophysical Journa

    Average power density spectrum of long GRBs detected with BeppoSAX/GRBM and with Fermi/GBM

    Full text link
    From past experiments the average power density spectrum (PDS) of GRBs with unknown redshift was found to be modelled from 0.01 to 1 Hz with a power-law, f^(-alpha), with alpha broadly consistent with 5/3. Recent analyses of the Swift/BAT catalogue showed analogous results in the 15-150 keV band. We carried out the same analysis on the bright GRBs detected by BeppoSAX/GRBM and Fermi/GBM. The BeppoSAX/GRBM data, in the energy range 40-700 keV and with 7.8 and 0.5-ms time resolutions, allowed us to explore for the first time the average PDS at very high frequencies (up to 1 kHz) and reveal a break around 1-2 Hz, previously found in CGRO/BATSE data. The Fermi/GBM data, in the energy band 8-1000 keV, allowed us to explore for the first time the average PDS within a broad energy range. Our results confirm and extend the energy dependence of the PDS slope, according to which harder photons have shallower PDS.Comment: 13 pages, 9 figures, accepted to MNRA

    Numerical study of the random field Ising model at zero and positive temperature

    Get PDF
    In this paper the three dimensional random field Ising model is studied at both zero temperature and positive temperature. Critical exponents are extracted at zero temperature by finite size scaling analysis of large discontinuities in the bond energy. The heat capacity exponent α\alpha is found to be near zero. The ground states are determined for a range of external field and disorder strength near the zero temperature critical point and the scaling of ground state tilings of the field-disorder plane is discussed. At positive temperature the specific heat and the susceptibility are obtained using the Wang-Landau algorithm. It is found that sharp peaks are present in these physical quantities for some realizations of systems sized 16316^3 and larger. These sharp peaks result from flipping large domains and correspond to large discontinuities in ground state bond energies. Finally, zero temperature and positive temperature spin configurations near the critical line are found to be highly correlated suggesting a strong version of the zero temperature fixed point hypothesis.Comment: 11 pages, 14 figure

    Gamma Ray Burst origin and their afterglow: story of a discovery and more

    Full text link
    In this paper we review the story of the BeppoSAX discovery of the Gamma Ray Burst afterglow and their cosmological distance, starting from their first detection with Vela satellites and from the efforts done before BeppoSAX. We also discuss the consequences of the BeppoSAX discovery, the issues left open by BeppoSAX, the progress done up to now and its perspectives.Comment: 31 pages, 14 figures, published in 2011 in the international refereed journal "La Rivista del Nuovo Cimento" of the Italian Physical Society, vol. 34. The occasion of this review paper was the award of the Fermi Prize 2010 to their authors "For the discovery of the X-ray afterglow of Gamma-Ray Burst with the BeppoSAX satellite" (http://www.sif.it/SIF/en/portal/activities/fermi_award
    corecore