770 research outputs found

    Ionization waves of arbitrary velocity driven by a flying focus

    Full text link
    A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or "flying," focus in which the trajectory of the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity along the optical axis. We present analytical calculations and simulations describing the propagation of the flying focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the speed of the ionization wave and, in conjunction, mitigate plasma refraction has the potential to advance several laser-based applications, including Raman amplification, photon acceleration, high harmonic generation, and THz generation

    Resonance absorption of a broadband laser pulse

    Full text link
    Broad bandwidth, infrared light sources have the potential to revolutionize inertial confinement fusion (ICF) by suppressing laser-plasma instabilities. There is, however, a tradeoff: The broad bandwidth precludes high efficiency conversion to the ultraviolet, where laser-plasma interactions are weaker. Operation in the infrared could intensify the role of resonance absorption, an effect long suspected to be the shortcoming of early ICF experiments. Here we present simulations exploring the effect of bandwidth on resonance absorption. In the linear regime, bandwidth has little effect on resonance absorption; in the nonlinear regime, bandwidth suppresses enhanced absorption resulting from the electromagnetic decay instability. These findings evince that regardless of bandwidth, an ICF implosion will confront at least linear levels of resonance absorption

    Numerical Simulation of magnetized jet creation using a hollow ring of laser beams

    Full text link
    Three dimensional FLASH magneto-hydrodynamics(MHD) modeling is carried out to interpret the OMEGA laser experiments of strongly magnetized, highly collimated jets driven by a ring of 20 OMEGA beams. The predicted optical Thomson scattering spectra and proton images are in good agreement with a subset of the experimental data. Magnetic fields generated via the Biermann battery term are amplified at the boundary between the core and the surrounding of the jet. The simulation predicts multiple axially aligned magnetic flux ropes with alternating poloidal component. Future applications of the hollow ring configuration in laboratory astrophysics are discussed

    Ray-based calculations of backscatter in laser fusion targets

    Full text link
    A 1D, steady-state model for Brillouin and Raman backscatter from an inhomogeneous plasma is presented. The daughter plasma waves are treated in the strong damping limit, and have amplitudes given by the (linear) kinetic response to the ponderomotive drive. Pump depletion, inverse-bremsstrahlung damping, bremsstrahlung emission, Thomson scattering off density fluctuations, and whole-beam focusing are included. The numerical code DEPLETE, which implements this model, is described. The model is compared with traditional linear gain calculations, as well as "plane-wave" simulations with the paraxial propagation code pF3D. Comparisons with Brillouin-scattering experiments at the OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, p. 495 (1997)] show that laser speckles greatly enhance the reflectivity over the DEPLETE results. An approximate upper bound on this enhancement, motivated by phase conjugation, is given by doubling the DEPLETE coupling coefficient. Analysis with DEPLETE of an ignition design for the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, p. 755 (1994)], with a peak radiation temperature of 285 eV, shows encouragingly low reflectivity. Re-absorption of Raman light is seen to be significant in this design.Comment: 16 pages, 19 figure

    Tunable sub-luminal propagation of narrowband x-ray pulses

    Get PDF
    Group velocity control is demonstrated for x-ray photons of 14.4 keV energy via a direct measurement of the temporal delay imposed on spectrally narrow x-ray pulses. Sub-luminal light propagation is achieved by inducing a steep positive linear dispersion in the optical response of 57{}^{57}Fe M\"ossbauer nuclei embedded in a thin film planar x-ray cavity. The direct detection of the temporal pulse delay is enabled by generating frequency-tunable spectrally narrow x-ray pulses from broadband pulsed synchrotron radiation. Our theoretical model is in good agreement with the experimental data.Comment: 8 pages, 4 figure

    High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications

    Get PDF
    A high order, deterministic direct numerical method is proposed for the nonrelativistic 2Dx×3Dv2D_{\bf x} \times 3D_{\bf v} Vlasov-Maxwell system, coupled with Fokker-Planck-Landau type operators. Such a system is devoted to the modelling of electronic transport and energy deposition in the general frame of Inertial Confinement Fusion applications. It describes the kinetics of plasma physics in the nonlocal thermodynamic equilibrium regime. Strong numerical constraints lead us to develop specific methods and approaches for validation, that might be used in other fields where couplings between equations, multiscale physics, and high dimensionality are involved. Parallelisation (MPI communication standard) and fast algorithms such as the multigrid method are employed, that make this direct approach be computationally affordable for simulations of hundreds of picoseconds, when dealing with configurations that present five dimensions in phase space

    An Experimental Platform for Pulsed-Power Driven Magnetic Reconnection

    Get PDF
    We describe a versatile pulsed-power driven platform for magnetic reconnection experiments, based on exploding wire arrays driven in parallel [Suttle, L. G. et al. PRL, 116, 225001]. This platform produces inherently magnetised plasma flows for the duration of the generator current pulse (250 ns), resulting in a long-lasting reconnection layer. The layer exists for long enough to allow evolution of complex processes such as plasmoid formation and movement to be diagnosed by a suite of high spatial and temporal resolution laser-based diagnostics. We can access a wide range of magnetic reconnection regimes by changing the wire material or moving the electrodes inside the wire arrays. We present results with aluminium and carbon wires, in which the parameters of the inflows and the layer which forms are significantly different. By moving the electrodes inside the wire arrays, we change how strongly the inflows are driven. This enables us to study both symmetric reconnection in a range of different regimes, and asymmetric reconnection.Comment: 14 pages, 9 figures. Version revised to include referee's comments. Submitted to Physics of Plasma

    Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

    Full text link
    Collisionless shocks can be produced as a result of strong magnetic fields in a plasma flow, and therefore are common in many astrophysical systems. The Weibel instability is one candidate mechanism for the generation of sufficiently strong fields to create a collisionless shock. Despite their crucial role in astrophysical systems, observation of the magnetic fields produced by Weibel instabilities in experiments has been challenging. Using a proton probe to directly image electromagnetic fields, we present evidence of Weibel-generated magnetic fields that grow in opposing, initially unmagnetized plasma flows from laser-driven laboratory experiments. Three-dimensional particle-in-cell simulations reveal that the instability efficiently extracts energy from the plasma flows, and that the self-generated magnetic energy reaches a few percent of the total energy in the system. This result demonstrates an experimental platform suitable for the investigation of a wide range of astrophysical phenomena, including collisionless shock formation in supernova remnants, large-scale magnetic field amplification, and the radiation signature from gamma-ray bursts

    Formation and Structure of a Current Sheet in Pulsed-Power Driven Magnetic Reconnection Experiments

    Get PDF
    We describe magnetic reconnection experiments using a new, pulsed-power driven experimental platform in which the inflows are super-sonic but sub-Alfv\'enic.The intrinsically magnetised plasma flows are long lasting, producing a well-defined reconnection layer that persists over many hydrodynamic time scales.The layer is diagnosed using a suite of high resolution laser based diagnostics which provide measurements of the electron density, reconnecting magnetic field, inflow and outflow velocities and the electron and ion temperatures.Using these measurements we observe a balance between the power flow into and out of the layer, and we find that the heating rates for the electrons and ions are significantly in excess of the classical predictions. The formation of plasmoids is observed in laser interferometry and optical self-emission, and the magnetic O-point structure of these plasmoids is confirmed using magnetic probes.Comment: 14 pages, 12 figures. Accepted for publication in Physics of Plasma
    corecore