300 research outputs found
Optical reconfiguration and polarization control in semi-continuous gold films close to the percolation threshold
Controlling and confining light by exciting plasmons in resonant metallic
nanostructures is an essential aspect of many new emerging optical
technologies. Here we explore the possibility of controllably reconfiguring the
intrinsic optical properties of semi-continuous gold films, by inducing
permanent morphological changes with a femtosecond (fs)-pulsed laser above a
critical power. Optical transmission spectroscopy measurements show a
correlation between the spectra of the morphologically modified films and the
wavelength, polarization, and the intensity of the laser used for alteration.
In order to understand the modifications induced by the laser writing, we
explore the near-field properties of these films with electron energy-loss
spectroscopy (EELS). A comparison between our experimental data and full-wave
simulations on the exact film morphologies hints toward a restructuring of the
intrinsic plasmonic eigenmodes of the metallic film by photothermal effects. We
explain these optical changes with a simple model and demonstrate
experimentally that laser writing can be used to controllably modify the
optical properties of these semi-continuous films. These metal films offer an
easy-to-fabricate and scalable platform for technological applications such as
molecular sensing and ultra-dense data storage.Comment: Supplementary materials available upon request ([email protected]
White Light Generation and Anisotropic Damage in Gold Films near Percolation Threshold
Strongly enhanced and confined electromagnetic fields generated in metal nanostructures upon illumination are exploited in many emerging technologies by either fabricating sophisticated nanostructures or synthesizing colloid nano particles. Here we study effects driven by field enhancement in vanishingly small gaps between gold islands in thin films near the electrically determined percolation threshold. Optical explorations using two-photon luminescence (TPL) and near-field microscopies reveals supercubic TPL power dependencies with white-light spectra, establishing unequivocally that the strongest TPL signals are generated close to the percolation threshold films, and occurrence of extremely confined (similar to 30 nm) and strongly enhanced (similar to 100 times) fields at the illumination wavelength. For linearly polarized and sufficiently powerful light, we observe pronounced optical damage with TPL images being sensitive to both wavelength and polarization of illuminating light. We relate these effects to thermally induced morphological changes observed with scanning electron microscopy images. Exciting physics involved in light interaction with near-percolation metal films along with their straightforward and scalable one-step fabrication procedure promises a wide range of fascinating developments and technological applications within diverse areas of modern nanotechnology, from biomolecule optical sensing to ultradense optical data storage
Enhancement of two-photon photoluminescence and SERS for low-coverage gold films
Electromagnetic field enhancement (FE) effects occurring in thin gold films 3-12-nm are investigated with two-photon photoluminescence (TPL) and Raman scanning optical microscopies. The samples are characterized using scanning electron microscopy images and linear optical spectroscopy. TPL images exhibit a strong increase in the level of TPL signals for films thicknesses 3–8-nm, near the percolation threshold. For some thicknesses, TPL measurements reveal super-cubic dependences on the incident power. We ascribe this feature to the occurrence of very strongly localized and enhanced electromagnetic fields due to multiple light scattering in random nanostructures that might eventually lead to white-light generation. Raman images exhibit increasing Raman signals when decreasing the film thickness from 12 to 6-nm and decreasing signal for the 3-nm-film. This feature correlates with the TPL observations indicating that highest FE is to be expected near the percolation threshold
Near- and far field spectroscopy of semi-continuous gold films with optically induced anisotropy.
The effect of a diet with fructan-rich chicory roots on intestinal helminths and microbiota with special focus on Bifidobacteria and Campylobacter in piglets around weaning
The restrictions on the use of antibiotic and anthelmintic treatments in organic pig farming necessitate alternative non-medical control strategies. Therefore, the antibiotic and parasite-reducing effect of a fructan-rich (prebiotic) diet of dried chicory was investigated in free-ranging piglets. Approximately half of 67 piglets from 9 litters were experimentally infected with Ascaris suum and Trichuris suis in the suckling period (1 to 7 weeks of age) and 58 of the piglets were challenged daily with E. coli O138:F8 for 9 days after weaning to induce weaning diarrhoea. The litters were fed either chicory (30% DM) or a control diet. The effect of chicory on intestinal helminths, intestinal microbiota, especially Bifidobacteria and Campylobacter spp., and E. coli post-weaning diarrhoea was assessed. The weight gain of the piglets was not impaired significantly by chicory. The intestinal A. suum worm burden was reduced by 64% (P=0.034) in the chicory-fed piglets, whereas these same piglets had 63% more T. suis worms (P=0.016). Feeding with chicory elicited no changes among the main bacterial groups in ileum according to terminal restriction fragment length polymorphism (T-RFLP) analysis. However, the terminal-restriction fragment (T-RF) 208 bp, which may belong to Lachnospiraceae, was stimulated by the chicory feed (P=0.03), and T-RF 370 bp that matches Enterobacter belonging to the Enterobacteria was reduced (P=0.004). Additionally, chicory increased the level of Bifidobacteria (P=0.001) and the faecal Campylobacter excretion level was transitorily reduced in chicory-fed piglets at 7 weeks of age (P=0.029). Unfortunately, it was not possible to assess the effect of chicory on post-weaning diarrhoea as it did not develop. In conclusion, feeding piglets chicory around the time of weaning caused complex changes of the microbiota and parasite communities within the intestinal tract, and feeding piglets chicory may therefore serve as an animal-friendly strategy to control pathogens
Influence of the substrate reflectivity on the properties of optically pumped GaAs/GaAsSb nanowire lasers
På vej til at blive mor og far - køn, klasse, etnicitet og race i jordemoderkonsultationer
On the way to parenthood - (re)productions of gender, ethnicity, race and class in midwife consultations.The premise of this article is that subject positions, which parents-to-be hold during pregnancy, influence their future parenthood. The article examines how such subject positions are produced in midwife consultations. It shows how the man in a heterosexual couple is positioned as peripheral while the woman is assigned the responsibility for the construction of the family by means of documents, architecture and midwife practices. At the same time, the article illustrates how midwife practices reproduce hierarchies of a superior white, majority ethnic, middle class norm which equals respectability, opposed to inferior non-white, minority ethnic, working class deviations
- …
