692 research outputs found

    First Gale Western Butte Capping-Unit Compositions, and Relationships to Earlier Units Along Curiosity's Traverse

    Get PDF
    The Curiosity rover has been traversing through the clay-bearing unit (Glen Torridon; GT), approaching Greenheugh pediment, a large, fan-shaped surface surrounding the mouth of Gediz Vallis on the lower slope of Mt. Sharp. The pediment unconformably overlies the underlying bedrock, and is hence younger than units of the Mt. Sharp group. Orbital imaging of the pediment has shown it to have a slightly lower albedo and higher thermal inertia than neighboring units, to be relatively retentive of craters (e.g., erosion resistant), and to exhibit curved bedforms suggestive of lithified eolian bedforms. No diagnostic spectral signature has been observed from orbit. Recent rover positions allowed remote imaging of the contact between Greenheugh pediment and the eroded Murray formation strata below it, showing that the pediment capping material is cross-bedded and relatively thin (1-3 m), and suggesting that the pediment may have been much larger at one time. As Curiosity approached the edge of the pediment, the team investigated two buttes named Central and Western. The latter butte contains dark capping material that initially looked similar to the pediment cap, but close inspection revealed important physical differences. Here we report on compositions from ChemCam of two float rocks that appear to have rolled down from the capping unit, and on potential relation-ships to other targets along the traverse of the rover

    In situ detection of boron by ChemCam on Mars

    Get PDF
    We report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels Curiosity rover ChemCam instrument in calcium-sulfate-filled fractures, which formed in a late-stage groundwater circulating mainly in phyllosilicate-rich bedrock interpreted as lacustrine in origin. We consider two main groundwater-driven hypotheses to explain the presence of boron in the veins: leaching of borates out of bedrock or the redistribution of borate by dissolution of borate-bearing evaporite deposits. Our results suggest that an evaporation mechanism is most likely, implying that Gale groundwaters were mildly alkaline. On Earth, boron may be a necessary component for the origin of life; on Mars, its presence suggests that subsurface groundwater conditions could have supported prebiotic chemical reactions if organics were also present and provides additional support for the past habitability of Gale crater

    Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism

    Get PDF
    This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1–3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate instrumentation

    The Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, and the Chemostratigraphy of the Murray Formation as Observed by the Chemcam Instrument

    Get PDF
    The Mars Science Laboratory (MSL) Curiosity rover explored Vera Rubin ridge (VRR) in Gale crater, Mars, for almost 500 sols (Mars days) between arriving at the ridge on sol 1809 of the mission in September 2017 and leaving it on sol 2302 upon entering the Glen Torridon area south of the ridge. VRR is a topographic ridge on the central mound, Aeolis Mons (Mt. Sharp), in Gale crater that displays a strong hematite spectral signature from orbit. In-situ observations on the ridge led to the recognition that the ridge-forming rocks belong to the Murray formation, the lowermost exposed stratigraphic unit of the Mt. Sharp group, that was first encountered at the Pahrump Hills location. Including VRR rocks, the Murray formation, interpreted to be primarily deposited in an ancient lacustrine environment in Gale crater, is more than 300 m thick. VRR itself is composed of two stratigraphic members within the Murray formation, the Pettegrove Point member overlain by the Jura member. The Pettegrove Point member overlies the Blunts Point member of the Murray formation. Areas of gray coloration are observed in the Jura member predominantly, but also in the Pettegrove Point member. Generally, gray areas are found in local topographic depressions, but contacts between red and gray rocks crosscut stratigraphy. Additionally, cm-scale dark concretions with very high iron-content are commonly observed in gray rocks, typically surrounded by a lighttoned zone that is conversely depleted in iron. A key goal for the VRR campaign was to characterize geochemical variations in the ridge-forming rocks to investigate the role of primary and diagenetic controls on the geochemistry and morphology of VRR. Here, we present observations by the ChemCam instrument on VRR and compare these to the full Murray formation chemostratigraphy. This work was recently submitted to a special issue of JGRPlanets that detail the full VRR campaign

    A perdeuterated cryoprotectant for neutron studies and a demonstration of its use for neutron powder diffraction on L-(-)-ephedrine hemihydrate

    Get PDF
    The use of perdeuteropolyethylpropylene (d-PEP) as a cryoprotectant for neutron studies of molecular organic solids is demonstrated by the solution of the structure of L-(--)-ephedrine hemihydrate from neutron powder diffraction data on a sample containing 20 wt% d-PEP. It is demonstrated that no contribution from d-PEP to the scattering is observed. Neutron diffraction studies of solvent-containing molecular crystals that require a perdeuterated cryoprotectant oil are thus possible.</p

    Oxidation Of Manganese At Kimberley, Gale Crater: More Free Oxygen In Mars' Past?

    Get PDF
    High Mn concentrations provide unique indicators of water-rich environments and their redox state. Very high-potential oxidants are required to oxidize Mn to insoluble, high-valence oxides that can precipitate and concentrate Mn in rocks and sediments; these redox potentials are much higher than those needed to oxidize Fe or S. Consequently, Mn-rich rocks on Earth closely track the rise of atmospheric oxygen. Given the association between Mn-rich rocks and the redox state of surface environments, observations of anomalous Mn enrichments on Mars raise similar questions about redox history, solubility and aqueous transport, and availability as a metabolic substrate. Our observations suggest that at least some of the high Mn present in Gale crater occurs in the form of Mn-oxides filling veins that crosscut sand-stones, requiring post-depositional precipitation as highly oxidizing fluids moved through the fractured strata after their deposition and lithification

    Using ChemCam derived geochemistry to identify the paleonet sediment transport direction and source region characteristics of the Stimson formation in Gale crater, Mars.

    Get PDF
    The NASA Curiosity rover has encountered both ancient and modern dune deposits within Gale crater. The modern dunes are actively migrating across the surface within the Bagnold Dune field of which Curiosity conducted analysis campaigns at two different localities. Variations in mafic-felsic mineral abundances between these two sites have been related to the aeolian mineral sorting regime for basaltic environments identified on the Earth which become preferentially enriched in olivine relative to plagioclase feldspar with increasing distance from the source. This aeolian mineral sorting regime for basaltic minerals has also been inferred for Mars from orbital data. The aim of this study is to investigate whether this aeolian mafic-felsic mineral sorting trend has left a geochemical signature in the ancient dune deposits preserved within the Stimson formation. The Stimson formation unconformably overlies the Murray formation and consists of thickly laminated, cross-bedded sandstone. Stimson outcrops have a variable thickness up to 5 meters covering a total area of 17 square kilometers. A dry, aeolian origin was determined for this sandstone due to the high sphericity and roundness of the grains, uniform bimodal grain size distribution (250-710 microns), and 1-meter-thick cross-beds. Identifying the geochemical signature of mineral sorting can provide insights about the paleo-net sediment transport direction of the dunes and prevailing wind direction at the time of deposition
    corecore