47 research outputs found
Modes of Overinitiation, dnaA Gene Expression, and Inhibition of Cell Division in a Novel Cold-Sensitive hda Mutant of Escherichia coli
The chromosomal replication cycle is strictly coordinated with cell cycle progression in Escherichia coli. ATP-DnaA initiates replication, leading to loading of the DNA polymerase III holoenzyme. The DNA-loaded form of the {beta} clamp subunit of the polymerase binds the Hda protein, which promotes ATP-DnaA hydrolysis, yielding inactive ADP-DnaA. This regulation is required to repress overinitiation. In this study, we have isolated a novel cold-sensitive hda mutant, the hda-185 mutant. The hda-185 mutant caused overinitiation of chromosomal replication at 25{degrees}C, which most likely led to blockage of replication fork progress. Consistently, the inhibition of colony formation at 25{degrees}C was suppressed by disruption of the diaA gene, an initiation stimulator. Disruption of the seqA gene, an initiation inhibitor, showed synthetic lethality with hda-185 even at 42{degrees}C. The cellular ATP-DnaA level was increased in an hda-185-dependent manner. The cellular concentrations of DnaA protein and dnaA mRNA were comparable at 25{degrees}C to those in a wild-type hda strain. We also found that multiple copies of the ribonucleotide reductase genes (nrdAB or nrdEF) or dnaB gene repressed overinitiation. The cellular levels of dATP and dCTP were elevated in cells bearing multiple copies of nrdAB. The catalytic site within NrdA was required for multicopy suppression, suggesting the importance of an active form of NrdA or elevated levels of deoxyribonucleotides in inhibition of overinitiation in the hda-185 cells. Cell division in the hda-185 mutant was inhibited at 25{degrees}C in a LexA regulon-independent manner, suggesting that overinitiation in the hda-185 mutant induced a unique division inhibition pathway
A compilation of field surveys on gaseous elemental mercury (GEM) from contrasting environmental settings in Europe, South America, South Africa and China: separating fads from facts
Mercury is transported globally in the atmosphere
mostly in gaseous elemental form (GEM, Hg0
gas),
but still few worldwide studies taking into account
different and contrasted environmental settings are
available in a single publication. This work presents
and discusses data from Argentina, Bolivia, Bosnia
and Herzegovina, Brazil, Chile, China, Croatia, Finland,
Italy, Russia, South Africa, Spain, Slovenia and
Venezuela. We classified the information in four
groups: (1) mining districts where this contaminant
poses or has posed a risk for human populations and/or
ecosystems; (2) cities, where the concentration ofatmospheric mercury could be higher than normal due
to the burning of fossil fuels and industrial activities;
(3) areas with natural emissions from volcanoes; and
(4) pristine areas where no anthropogenic influence
was apparent. All the surveys were performed using
portable LUMEX RA-915 series atomic absorption
spectrometers. The results for cities fall within a low
GEM concentration range that rarely exceeds 30 ng m-3,
that is, 6.6 times lower than the restrictive ATSDR
threshold (200 ng m-3) for chronic exposure to this
pollutant. We also observed this behavior in the former
mercury mining districts, where few data were above
200 ng m-3.We noted that high concentrations of GEM
are localized phenomena that fade away in short
distances. However, this does not imply that they do not
pose a risk for those working in close proximity to the
source. This is the case of the artisanal gold miners that
heat the Au–Hg amalgam to vaporize mercury. In this
respect, while GEM can be truly regarded as a hazard,
because of possible physical–chemical transformations
into other species, it is only under these localized
conditions, implying exposure to high GEM concentrations,
which it becomes a direct risk for humans.Grants
CGL2009-13171 and CTM2012-33918 from the Spanish
Ministry of Economy and Competitiveness and PII1I09-0142-
4389 from theCastilla-LaMancha (Spain)RegionalGovernment.Published713-7346A. Monitoraggio ambientale, sicurezza e territorioJCR Journalrestricte
Machine learning techniques for pile-up rejection in cryogenic calorimeters
CUORE Upgrade with Particle IDentification (CUPID) is a foreseen ton-scale array of Li_{2} 2 MoO_{4} 4 (LMO) cryogenic calorimeters with double readout of heat and light signals. Its scientific goal is to fully explore the inverted hierarchy of neutrino masses in the search for neutrinoless double beta decay of ^{100} 100 Mo. Pile-up of standard double beta decay of the candidate isotope is a relevant background. We generate pile-up heat events via injection of Joule heater pulses with a programmable waveform generator in a small array of LMO crystals operated underground in the Laboratori Nazionali del Gran Sasso, Italy. This allows to label pile-up pulses and control both time difference and underlying amplitudes of individual heat pulses in the data. We present the performance of supervised learning classifiers on data and the attained pile-up rejection efficiency
A first test of CUPID prototypal light detectors with NTD-Ge sensors in a pulse-tube cryostat
CUPID is a next-generation bolometric experiment aiming at searching for
neutrinoless double-beta decay with ~250 kg of isotopic mass of Mo. It
will operate at 10 mK in a cryostat currently hosting a similar-scale
bolometric array for the CUORE experiment at the Gran Sasso National Laboratory
(Italy). CUPID will be based on large-volume scintillating bolometers
consisting of Mo-enriched LiMoO crystals, facing thin
Ge-wafer-based bolometric light detectors. In the CUPID design, the detector
structure is novel and needs to be validated. In particular, the CUORE cryostat
presents a high level of mechanical vibrations due to the use of pulse tubes
and the effect of vibrations on the detector performance must be investigated.
In this paper we report the first test of the CUPID-design bolometric light
detectors with NTD-Ge sensors in a dilution refrigerator equipped with a pulse
tube in an above-ground lab. Light detectors are characterized in terms of
sensitivity, energy resolution, pulse time constants, and noise power spectrum.
Despite the challenging noisy environment due to pulse-tube-induced vibrations,
we demonstrate that all the four tested light detectors comply with the CUPID
goal in terms of intrinsic energy resolution of 100 eV RMS baseline noise.
Indeed, we have measured 70--90 eV RMS for the four devices, which show an
excellent reproducibility. We have also obtained outstanding energy resolutions
at the 356 keV line from a Ba source with one light detector achieving
0.71(5) keV FWHM, which is -- to our knowledge -- the best ever obtained when
compared to detectors of any technology in this energy range.Comment: Prepared for submission to JINST; 16 pages, 7 figures, and 1 tabl
A CUPID Li2100MoO4scintillating bolometer tested in the CROSS underground facility
A scintillating bolometer based on a large cubic Li2100MoO4 crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation 0¿2ß experiment CUPID . The measurements were performed at 18 and 12 mK temperature in a pulse tube dilution refrigerator. This setup utilizes the same technology as the CUORE cryostat that will host CUPID and so represents an accurate estimation of the expected performance. The Li2100MoO4 bolometer shows a high energy resolution of 6 keV FWHM at the 2615 keV ¿ line. The detection of scintillation light for each event triggered by the Li2100MoO4 bolometer allowed for a full separation (~8s) between ¿(ß) and a events above 2 MeV . The Li2100MoO4 crystal also shows a high internal radiopurity with 228Th and 226Ra activities of less than 3 and 8 µBq/kg, respectively. Taking also into account the advantage of a more compact and massive detector array, which can be made of cubic-shaped crystals (compared to the cylindrical ones), this test demonstrates the great potential of cubic Li2100MoO4 scintillating bolometers for high-sensitivity searches for the 100Mo 0¿2ß decay in CROSS and CUPID projects
Twelve-crystal prototype of LiMoO scintillating bolometers for CUPID and CROSS experiments
An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers
equipped with 16 bolometric Ge light detectors, aiming at optimization of
detector structure for CROSS and CUPID double-beta decay experiments, was
constructed and tested in a low-background pulse-tube-based cryostat at the
Canfranc underground laboratory in Spain. Performance of the scintillating
bolometers was studied depending on the size of phonon NTD-Ge sensors glued to
both LMO and Ge absorbers, shape of the Ge light detectors (circular vs.
square, from two suppliers), in different light collection conditions (with and
without reflector, with aluminum coated LMO crystal surface). The scintillating
bolometer array was operated over 8 months in the low-background conditions
that allowed to probe a very low, Bq/kg, level of the LMO crystals
radioactive contamination by Th and Ra.Comment: Prepared for submission to JINST; 23 pages, 9 figures, and 4 table
