60,690 research outputs found

    Transition to the Giant Vortex State in an Harmonic Plus Quartic Trap

    Full text link
    We consider a rapidly rotating Bose-condensed gas in an harmonic plus quartic trap. At sufficiently high rotation rates the condensate acquires an annular geometry with the superposition of a vortex lattice. With increasing rotation rate the lattice evolves into a single ring of vortices. Of interest is the transition from this state to the giant vortex state in which the circulation is carried by only a central vortex. By analyzing the Gross-Pitaevskii energy functional variationally, we have been able to map out the phase boundary between these two states as a function of the rotation rate and the various trapped gas parameters. The variational results are in good qualitative agreement with those obtained by means of a direct numerical solution of the Gross-Pitaevskii equation.Comment: 19 pages, 10 figure

    U(1)U(1) gauge vector field on a codimension-2 brane

    Full text link
    In this paper, we obtain a gauge invariant effective action for a bulk massless U(1)U(1) gauge vector field on a brane with codimension two by using a general Kaluza-Klein (KK) decomposition for the field. It suggests that there exist two types of scalar KK modes to keep the gauge invariance of the action for the massive vector KK modes. Both the vector and scalar KK modes can be massive. The masses of the vector KK modes m(n)m^{(n)} contain two parts, m1(n)m_{1}^{(n)} and m2(n)m_{2}^{(n)}, due to the existence of the two extra dimensions. The masses of the two types of scalar KK modes mϕ(n)m_{\phi}^{(n)} and mφ(n)m_{\varphi}^{(n)} are related to the vector ones, i.e., mϕ(n)=m1(n)m_{\phi}^{(n)}=m_{1}^{(n)} and mφ(n)=m2(n)m_{\varphi}^{(n)}=m_{2}^{(n)}. Moreover, we derive two Schr\"{o}dinger-like equations for the vector KK modes, for which the effective potentials are just the functions of the warp factor.Comment: 15 pages,no figures, accepted by JHE

    Intra- and Intermolecular C−H Activation by Bis(phenolate)pyridineiridium(III) Complexes

    Get PDF
    A bis(phenolate)pyridine pincer ligand (henceforth abbreviated as ONO) has been employed to support a variety of iridium complexes in oxidation states I, III, and IV. Complexes (ONO)IrL_2Me (L = PPh_3, PEt_3) react with I_2 to cleave the Ir–C bond and liberate MeI, apparently via a mechanism beginning with electron transfer to generate an intermediate Ir(IV) complex, which can be isolated and characterized for the case L = PEt_3. The PPh_3 complex is transformed in benzene at 65 °C to the corresponding phenyl complex, with loss of methane, and subsequently to a species resulting from metalation of a PPh_3 ligand. Labeling and kinetics studies indicate that PPh_3 is the initial site of C–H activation, even though the first observed product is that resulting from intermolecular benzene activation. C–H activation of acetonitrile has also been observed

    Hartree-Fock Studies of the Ferroelectric Perovskites

    Full text link
    Within an ab-initio HF scheme, we use both Berry-phase calculations and supercell calculations in order to compute the dynamical charges for lattice dynamics and the electronic dielectric constant for KNbO_3 and BaTiO_3. Comparison with experimental data indicates that HF provides a description of the electronic properties of this material whose accuracy is of the same order as the LDA one. There are however significant differences between the two sets of results, whose origin is scrutinized. Motivated by the study of surface and domain-boundary properties, we also present some results for BaTiO_3 slabs, including both genuinely isolated and periodically repeated slabs with different terminations. The capability of dealing with a genuinely isolated slab is a virtue of the localized-basis implementation adopted here. We demonstrate, amongst other things, the nontrivial dynamical-charge neutrality of BaTiO_3 [001] surfaces.Comment: 11 pages, 6 figures. Presented at the Fifth Williamsburg Workshop on First-Principles Calculations for Ferroelectric

    Null geodesics and gravitational lensing in a nonsingular spacetime

    Get PDF
    In this paper, the null geodesics and gravitational lensing in a nonsingular spacetime are investigated. According to the nature of the null geodesics, the spacetime is divided into several cases. In the weak deflection limit, we find the influence of the nonsingularity parameter qq on the positions and magnifications of the images is negligible. In the strong deflection limit, the coefficients and observables for the gravitational lensing in a nonsingular black hole background and a weakly nonsingular spacetime are obtained. Comparing these results, we find that, in a weakly nonsingular spacetime, the relativistic images have smaller angular position and relative magnification, but larger angular separation than that of a nonsingular black hole. These results might offer a way to probe the spacetime nonsingularity parameter and put a bound on it by the astronomical instruments in the near future.Comment: 15 pages, 5 figures, 1 tabl

    Electric-field-induced stress relaxation in alpha-phase poly(vinylidene fluoride) films

    Full text link
    The relationship between elastic fatigue and electrical cyclic loading in alpha-phase poly(vinylidene fluoride) films has been investigated. Our experimental studies have shown that the electric-field-induced fatigue behavior can be described by a stress relaxation, which belongs to the Kohlrausch function group, and the corresponding exponent is a modified two-parameter Weibull distribution function.Comment: 3 pages, 3 figure
    corecore