526 research outputs found
Interatomic potentials for atomistic simulations of the Ti-Al system
Semi-empirical interatomic potentials have been developed for Al, alpha-Ti,
and gamma-TiAl within the embedded atomic method (EAM) by fitting to a large
database of experimental as well as ab-initio data. The ab-initio calculations
were performed by the linear augmented plane wave (LAPW) method within the
density functional theory to obtain the equations of state for a number of
crystal structures of the Ti-Al system. Some of the calculated LAPW energies
were used for fitting the potentials while others for examining their quality.
The potentials correctly predict the equilibrium crystal structures of the
phases and accurately reproduce their basic lattice properties. The potentials
are applied to calculate the energies of point defects, surfaces, planar faults
in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al
system, the proposed potentials provide reasonable description of the lattice
thermal expansion, demonstrating their usefulness in the molecular dynamics or
Monte Carlo studies at high temperatures. The energy along the tetragonal
deformation path (Bain transformation) in gamma-TiAl calculated with the EAM
potential is in a fairly good agreement with LAPW calculations. Equilibrium
point defect concentrations in gamma-TiAl are studied using the EAM potential.
It is found that antisite defects strongly dominate over vacancies at all
compositions around stoichiometry, indicating that gamm-TiAl is an antisite
disorder compound in agreement with experimental data.Comment: 46 pages, 6 figures (Physical Review B, in press
Plastic Flow in Two-Dimensional Solids
A time-dependent Ginzburg-Landau model of plastic deformation in
two-dimensional solids is presented. The fundamental dynamic variables are the
displacement field \bi u and the lattice velocity {\bi v}=\p {\bi u}/\p t.
Damping is assumed to arise from the shear viscosity in the momentum equation.
The elastic energy density is a periodic function of the shear and tetragonal
strains, which enables formation of slips at large strains. In this work we
neglect defects such as vacancies, interstitials, or grain boundaries. The
simplest slip consists of two edge dislocations with opposite Burgers vectors.
The formation energy of a slip is minimized if its orientation is parallel or
perpendicular to the flow in simple shear deformation and if it makes angles of
with respect to the stretched direction in uniaxial stretching.
High-density dislocations produced in plastic flow do not disappear even if
the flow is stopped. Thus large applied strains give rise to metastable,
structurally disordered states. We divide the elastic energy into an elastic
part due to affine deformation and a defect part. The latter represents degree
of disorder and is nearly constant in plastic flow under cyclic straining.Comment: 16pages, Figures can be obtained at
http://stat.scphys.kyoto-u.ac.jp/index-e.htm
Notes on dark energy interacting with dark matter and unparticle in loop quantum cosmology
We investigate the behavior of dark energy interacting with dark matter and
unparticle in the framework of loop quantum cosmology. In four toy models, we
study the interaction between the cosmic components by choosing different
coupling functions representing the interaction. We found that there are only
two attractor solutions namely dark energy dominated and dark matter dominated
Universe. The other two models are unstable, as they predict either a dark
energy filled Universe or one completely devoid of it.Comment: 9 pages, 10 figures. v2: Minor revisions, matches published versio
MD Simulation of Colloidal Particle Transportation in a Fiber Matrix
Surface glycocalyx, as a barrier to material exchange between circulating blood and body tissues, can be treated as a periodic square array of cylindrical fibers. Previous study treated the glycocalyx as porous media and simulated by continuum theory. However, it has recently been found that a relatively hexagonal fibre-matrix structure may be responsible for the ultrafiltration properties of microvascular walls. The fibre-matrix is an underlaying three-dimensional meshwork with a fibre diameter of 1012 nm and characteristic spacing of about 20 nm. The porous medium model does not consider the particle size, when the particle size is comparable to the fibre spacing, the porous medium assumption may not be appropriate to study the permeable characteristics of nanosize particle in such fibre-matrix structure. \newline Molecular dynamics (MD) simulation is a powerful method to simulate the fluid flow at the molecular level, it has been applied successfully in many fields including hydrodynamics and demonstrated surprising results at nanoscale which is different from their macroscopic counterparts. In this study we use MD to investigate the permeable characteristics of nano-particle in a quasi-periodic ultra-structure of the endothelial glycocalyx. As the first attempt, fibre-matrix is simplified as a two dimensional periodic system in which the colloidal particles, fluid solvent, fibers are all treated as atomic systems, and the study is focused on the effect of particle size on particle motion in fiber matrix
Search for Invisible Decays of and in and
Using a data sample of decays collected with the BES
II detector at the BEPC, searches for invisible decays of and
in to and are performed.
The signals, which are reconstructed in final states, are used
to tag the and decays. No signals are found for the
invisible decays of either or , and upper limits at the 90%
confidence level are determined to be for the ratio
and for . These are the first
searches for and decays into invisible final states.Comment: 5 pages, 4 figures; Added references, Corrected typo
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and 6.5 pb taken at GeV with the BESII detector at the
BEPC collider, we have measured the observed cross sections for 12 exclusive
light hadron final states produced in annihilation at the two energy
points. We have also set the upper limits on the observed cross sections and
the branching fractions for decay to these final states at 90%
C.L.Comment: 8 pages, 5 figur
Measurements of Cabibbo Suppressed Hadronic Decay Fractions of Charmed D0 and D+ Mesons
Using data collected with the BESII detector at storage ring
Beijing Electron Positron Collider, the measurements of relative branching
fractions for seven Cabibbo suppressed hadronic weak decays ,
, and , , and are presented.Comment: 11 pages, 5 figure
A study of charged kappa in
Based on events collected by BESII, the decay
is studied. In the invariant mass
spectrum recoiling against the charged , the charged
particle is found as a low mass enhancement. If a Breit-Wigner function of
constant width is used to parameterize the kappa, its pole locates at MeV/. Also in this channel,
the decay is observed for the first time.
Its branching ratio is .Comment: 14 pages, 4 figure
Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays
By analyzing about 33 data sample collected at and around 3.773
GeV with the BES-II detector at the BEPC collider, we directly measure the
branching fractions for the neutral and charged inclusive semimuonic decays
to be and , and determine the ratio of the two branching
fractions to be
- …
